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K-theory of rings

R aring
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K-theory of rings

R aring

Ko(R) generated by the isomorphism classes of f.g. projective
R-modules mod [P @ Q] = [P] + [Q] [Grothendieck’57]
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K-theory of rings

R aring

Ko(R) generated by the isomorphism classes of f.g. projective
R-modules mod [P @ Q] = [P] + [Q] [Grothendieck’57]

Ki(R) the abelianization of GL(R) [Whitehead’50]
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K-theory of rings

R aring

Ko(R) generated by the isomorphism classes of f.g. projective
R-modules mod [P @ Q] = [P] + [Q] [Grothendieck’57]

Ki(R) the abelianization of GL(R) [Whitehead’50]

Kn(R) foralln>0 [Quillen'73]
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Quillen’s K-theory

E an exact category
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Quillen’s K-theory

E an exact category

Ko(E) generated by the objects in E mod [B] = [B/A] + [A] for
each short exact sequence A— B — B/A [Grothendieck’57]
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Quillen’s K-theory

E an exact category

Ko(E) generated by the objects in E mod [B] = [B/A] + [A] for
each short exact sequence A— B — B/A [Grothendieck’57]

Kn(E) [Quillen’73] with a number of theorems allowing computations
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Quillen’s K-theory

E an exact category

Ko(E) generated by the objects in E mod [B] = [B/A] + [A] for
each short exact sequence A— B — B/A [Grothendieck’57]

Kn(E) [Quillen’73] with a number of theorems allowing computations

Example

For E = proj(R) the category of f.g. projective R-modules we recover
Kn(R).
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Quillen’s K-theory

E an exact category

Ko(E) generated by the objects in E mod [B] = [B/A] + [A] for
each short exact sequence A— B — B/A [Grothendieck’57]

Kn(E) [Quillen’73] with a number of theorems allowing computations

Example
For E = proj(R) the category of f.g. projective R-modules we recover
Kn(R).

For E the category of vector bundles over a scheme X we obtain its
Quillen K -theory.
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Waldhausen’s K-theory

w a category with cofibrations and weak equivalences
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Waldhausen’s K-theory

w a category with cofibrations and weak equivalences
Ko(W) generated by the objects in W mod [B] = [B/A] + [A]

for each cofiber sequence A— B— B/A and [A] = [A]]
for each weak equivalence A= A" [Grothendieck’57]
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Waldhausen’s K-theory

w a category with cofibrations and weak equivalences

Ko(W) generated by the objects in W mod [B] = [B/A] + [A]
for each cofiber sequence A— B— B/A and [A] = [A]]
for each weak equivalence A= A" [Grothendieck’57]

Kn(W)  [Waldhausen'73]
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Waldhausen’s K-theory

w a category with cofibrations and weak equivalences

Ko(W) generated by the objects in W mod [B] = [B/A] + [A]
for each cofiber sequence A— B— B/A and [A] = [A]]
for each weak equivalence A= A" [Grothendieck’57]

Kn(W)  [Waldhausen'73]

Example

For W = CP(E) the category of bounded complexes in E we recover
Kn(E) [Gillet-Waldhausen]
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Waldhausen’s K-theory

w a category with cofibrations and weak equivalences

Ko(W) generated by the objects in W mod [B] = [B/A] + [A]
for each cofiber sequence A— B— B/A and [A] = [A]]
for each weak equivalence A= A" [Grothendieck’57]

Kn(W)  [Waldhausen'73]

Example

For W = CP(E) the category of bounded complexes in E we recover
Kn(E) [Gillet-Waldhausen]

For W the category of perfect complexes of globally finite Tor-amplitude
over a scheme X we obtain its [Thomason—Trobaugh’90] K-theory.
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K-theory of triangulated categories

T a triangulated category
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K-theory of triangulated categories

T a triangulated category

Ko(T)  generated by the objects in T mod [Y] = [C{] + [X]
for each exact triangle X Ly Cr— XX
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K-theory of triangulated categories

T a triangulated category

Ko(T)  generated by the objects in T mod [Y] = [C{] + [X]
for each exact triangle X Ly Cr— XX

Kn(T)?  several definitions by [Neeman’97-01]
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K-theory of triangulated categories

T a triangulated category

Ko(T)  generated by the objects in T mod [Y] = [C{] + [X]
for each exact triangle X Ly Cr— XX

Kn(T)?  several definitions by [Neeman’97-01]

Example

ForT = D(E) the bounded derived category of an exact category
we have Ky(E) = Ky(CP(E)) = Ko(D?(E)).

v
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K-theory of triangulated categories

T a triangulated category

Ko(T)  generated by the objects in T mod [Y] = [C{] + [X]
for each exact triangle X Ly Cr— XX

Kn(T)?  several definitions by [Neeman’97-01]

Example

ForT = D(E) the bounded derived category of an exact category
we have Ky(E) = Ky(CP(E)) = Ko(D?(E)).

If T has a bounded non-degenerate t-structure with heart A then
Ko(A) = Ko(T)
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K-theory of triangulated categories

T a triangulated category

Ko(T)  generated by the objects in T mod [Y] = [C{] + [X]
for each exact triangle X Ly Cr— XX

Kn(T)?  several definitions by [Neeman’97-01]

Example

ForT = D(E) the bounded derived category of an exact category
we have Ky(E) = Ky(CP(E)) = Ko(D?(E)).

If T has a bounded non-degenerate t-structure with heart A then
Ko(A) = Ko(T)

For T = Perf(X) the derived category of perfect complexes of globally
finite Tor-amplitude over a scheme Ky(X) = Ky(Perf(X)).
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K-theory of triangulated categories

Is there any reasonable higher K-theory of triangulated categories with
natural isomorphisms K,(E) = K,(D?(E))?
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K-theory of triangulated categories

Is there any reasonable higher K-theory of triangulated categories with
natural isomorphisms K,(E) = K,(D?(E))? No [Schlichting’02]
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K-theory of triangulated categories

Is there any reasonable higher K-theory of triangulated categories with
natural isomorphisms K,(E) = K,(D?(E))? No [Schlichting’02]

@ There’s no higher K-theory satisfying agreement and localization

S—T—>T/S ~ -+ = Ky(S) = Kn(T) = Kn(T/S) = Kr—1(S) — - -
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K-theory of triangulated categories

Is there any reasonable higher K-theory of triangulated categories with
natural isomorphisms K,(E) = K,(D?(E))? No [Schlichting’02]

@ There’s no higher K-theory satisfying agreement and localization
S—T—>T/S ~ -+ = Ky(S) = Kn(T) = Kn(T/S) = Kr—1(S) — - -

@ There’s no higher K-theory satisfying agreement for n = 1 and
additivity
F.GH:S —T
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Neeman’s K-theories of triangulated categories

K{(T) based on the notions of exact or distinguished triangle
and special octahedron
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Neeman’s K-theories of triangulated categories

K{(T) based on the notions of exact or distinguished triangle
and special octahedron

K;(T) based on the notions of virtual triangle and virtual
octahedron
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Neeman’s K-theories of triangulated categories

K{(T) based on the notions of exact or distinguished triangle
and special octahedron

K;(T) based on the notions of virtual triangle and virtual
octahedron

KY(T) requires the existence of certain models and is non-functorial!
w = Waldhausen. .. or wrong
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Comparison homomorphisms

K,gV(T) if defined ngj(T) natural K,‘,/(T)
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Comparison homomorphisms

K,gV(T) if defined ngj(T) natural K,‘,/(T)

Kn(E) —— K3¥(DP(E)) —— Kg(DP(E)) == K (D*(E))

\_/

natural
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Comparison homomorphisms

K,gV(T) if defined ngj(T) natural K,‘,/(T)

Kn(E) —— K3¥(DP(E)) —— Kg(DP(E)) == K (D*(E))

\_/

natural

and if T has a t-structure with heart A, e.g. T = D°(A)
Kn(A) if defined K,‘;V(T) if defined K,‘,j(T) natural KV(T)
’ ? * R

\_/'

natural
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Comparison homomorphisms

K,gV(T) if defined ngj(T) natural K,‘,/(T)

Kn(E) —— K3¥(DP(E)) —— Kg(DP(E)) == K (D*(E))

\_/

natural

and if T has a t-structure with heart A, e.g. T = D°(A)

Kn(A) if defined K,‘;V(T) if defined K,‘,j(T) natural KnV(T)

\_/'

natural

@ They are all isomorphisms for n =0
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Comparison homomorphisms

K,gV(T) if defined ngj(T) natural K,‘,/(T)

Kn(E) —— K3¥(DP(E)) —— Kg(DP(E)) == K (D*(E))

\_/

natural

and if T has a t-structure with heart A, e.g. T = D°(A)

Kn(A) if defined K,‘;V(T) if defined K,‘,j(T) natural KnV(T)

\_/'

natural

@ They are all isomorphisms for n =0
o Ky(A) = KY(T) [Neeman’'98]
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Comparison homomorphisms

K,gV(T) if defined ngj(T) natural K,‘,/(T)

Kn(E) —— K3¥(DP(E)) —— Kg(DP(E)) == K (D*(E))

\_/

natural

and if T has a t-structure with heart A, e.g. T = D°(A)

Kn(A) if defined K,‘;V(T) if defined K,‘,j(T) natural KnV(T)

\_/'

natural
@ They are all isomorphisms for n =0
o Ky(A) = KY(T) [Neeman’'98]
@ Kj(A) is a direct summand of K¢(T) and K/(T) [Neeman’00]
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Comparison homomorphisms

K,gV(T) if defined K,‘,j(T) natural K,‘,/(T)

Kn(E) —— K3¥(DP(E)) —— Kg(DP(E)) == K (D*(E))

\_/

natural

and if T has a t-structure with heart A, e.g. T = D°(A)

Kn(A) if defined K,‘;V(T) if defined K,‘,j(T) natural KnV(T)

\_/'

natural
@ They are all isomorphisms for n =0
o Ky(A) = KY(T) [Neeman’'98]
@ Kj(A) is a direct summand of K¢(T) and K/(T) [Neeman’00]

@ “Very embarrasingly, this is all we know. The first question would
be...what happens forn =17?" [Neeman’05]
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Computing Ky and Kj simultaneously

For the different K-theories, we are going to define a chain complex of
non-abelian groups D, concentrated in dimensions n = 0, 1 whose
homology is H,D.. = K.

b b
D§® @ D§

<-,~>J

K1 D1 Do KO

The bracket (-, -) controls commutators in Dy and Dy as well as the
action of the Hopf map

n: Ky ®7Z/2 — K
XxX®1 — (X,X)
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Abelian 2-groups

An abelian 2-group C, consists of a diagram of groups

cab o czb 4 ¢, 2, ¢
such that
(a,b) = —(b, a, a,b e Cy;
d(a,b)=—-b—a+b+a;
(0c,0d) = —d —c+d+c, c,de Cy.
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Abelian 2-groups

An abelian 2-group C, consists of a diagram of groups

cab o czb 4 ¢, 2, ¢
such that
(a,b) = —(b, a, a,b e Cy;
d(a,b)=—-b—a+b+a;
(0c,0d) = —d —c+d+c, c,de Cy.

The homology groups of C, are

HoC. = Co/0(Cy),

H;C, = Kero.
Notice that Cy and Cy have nilpotency class 2 and HyC, and H; C. are
abelian. The group Cy acts on Cy, ¢? = ¢ + (a, dc).
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Abelian 2-groups

A morphism of abelian 2-groups f.: C. — D, is a commutative diagram

czb e o 02 ¢

f§b®fgbl f J f{

D2 @ pav ), p, 2, p,
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Abelian 2-groups

A morphism of abelian 2-groups f.: C. — D, is a commutative diagram

cab e o 02 ¢

f§b®fgbuggb®ggb fi Hm fougo

D2 @ pav ), b, 2, p,
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Abelian 2-groups

A morphism of abelian 2-groups f.: C. — D, is a commutative diagram

cab e o 02 ¢

eeeljee o
Dab & pgo 1, p, 2, D,

A homotopy a: f, = g, is a function a: Cy — Dy satisfying
a(a+ b) = a(a)®® + o(b),

da(a) = —go(a) + fo(a),
ad(c) = —gi(c) + fi(c).
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Ko and K of an exact category

We define the abelian 2-group D.E by generators and relations:

n Generators Relations

0 [A]forany objectinE  9[A— B B/A] = —[B] + [B/A] + [A]

1 [A—B—B/Alforany [B—C—C/B]+[A— B—B/A| =
short exact sequence [A— C — C/A]+ [B/A— C/A— C/B]A

for any 2-step filtration
c/B

B/A~—C/A

I

A——B—C

1 ([A,[B]) = -[B—A® B~ A
+[A— A® B— B]

1 [0—~0-—-0]=0



K, and K, of a triangulated category

The abelian 2-group D¢ T is defined by generators and relations:

n Generators Relations
0 [X]foranyobject I[X—Y—=Cr—1IX]=—[Y]+[C+ [X]
X=Y=Ci—=XIX] [Y=2Z-=Cy—=2Y]|+[X=Y=Ci—XX] =

for any exact or [X —Z— Cygr—EX]+[Cr— Cygr — Cg— L Cf]X]
distinguised A for any special octahedron
ZK Cq
\\g\\}cgfﬁ
gf ) 2 ¢ +1
/*//; Y/\\J
X% - ] +1 . Cf

1 (IXLIYD ==Y = XaY > X231V
+X=XaY =Y 31X]
1 [0—-0—-0—-%X0]=0
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K, and K, of a triangulated category
The abelian 2-group D! T is defined by generators and relations:
n Generators Relations
0 [X]foranyobject I[X—Y—=Cr—1IX]=—[Y]+[C+ [X]

X=Y=Ci—=XIX] [Y=2Z-=Cy—=2Y]|+[X=Y=Ci—XX] =
for any virtual A [X —Z— Cygr—EX]+[Cr— Cygr — Cg— L Cf]X]
for any virtual octahedron

zZ- o

\ /
o Ca ,/
gf / [/ +1
/+ ;Y\ J
K- » G

X

f

1 (XL [YD=-[Y = XY > X3TY]
+X=XaY =Y 31X]
1 [0—-0—-0—-%X0]=0
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The theorem of the heart for K;

Theorem A
If T is a triangulated category with a bounded non-degenerate
t-structure with heart A,

Ki(A) = K{(T) = K{/(T).
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The theorem of the heart for K;

Theorem A

If T is a triangulated category with a bounded non-degenerate
t-structure with heart A,

Ki(A) = K{(T) = K{/(T).

Corollary

If Sp® is the stable homotopy category of spectra X such that
@ mnX is a f.g. abelian group, K{ (Sp®) = K (D?(Z)) = Ki(Z) = /2.
nez
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Ideas in the proof of Theorem A

The idea is to construct a strong deformation retraction

« (o
@I(T):’D*(A), pi. =id,  a:ip. = id,

Ix
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Ideas in the proof of Theorem A

The idea is to construct a strong deformation retraction

« (o
@I(T):’D*(A), pi. =id,  a:ip. = id,

Ix

polX] = -+ = [H-1 X] + [HoX] — [Hi X] + - - - .
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Ideas in the proof of Theorem A

The idea is to construct a strong deformation retraction

« (o
@I(T):’D*(A), pi. =id,  a:ip. = id,

Ix

polX] = -+ = [H-1 X] + [HoX] — [Hi X] + - - - .

An exact triangle X Ly C; — XX induces a long exact sequence

cor > Hp X — HpY — HCf — Hp g X — -+
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Ideas in the proof of Theorem A

The idea is to construct a strong deformation retraction

« (o
@I(T):’D*(A), pi. =id,  a:ip. = id,

Ix
po[X] = -+ — [Hoa X] + [HoX] — [H1 X] + - - - .
An exact triangle X Ly C; — XX induces a long exact sequence
cor > Hp X — HpY — HCf — Hp g X — -+
that we reindex

o Ay T Ay O Ayt O Ay

with Ao = Ho Y
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Ideas in the proof of Theorem A

The idea is to construct a strong deformation retraction

« (o
@I(T):’D*(A), pi. =id,  a:ip. = id,

Ix

polX] = -+ = [H-1 X] + [HoX] — [Hi X] + - - - .

An exact triangle X Ly C; — XX induces a long exact sequence
cor > Hp X — HpY — HCf — Hp g X — -+
that we reindex

o Ay T Ay O Ayt O Ay

with Ap = HyY and
PiIX 5 Y 5 Cr = EX] = 2 (—1)M[Ker ¢m— Am — Ker dmi]
e mod (DA, DyA).



Ideas in the proof of Theorem A

The definition of py is forced by the following exact triangles, X € Txp,

Xonit = X = Z"Ha X = TX5pp1.
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Ideas in the proof of Theorem A

The definition of py is forced by the following exact triangles, X € Txp,

Xonp1 = X = ZHp X = TXopi1.

A truncation of an exact triangle X —f> Y- C—XXinTspisa
special octahedron
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Ideas in the proof of Theorem A

The definition of py is forced by the following exact triangles, X € Txp,

Xonp1 = X = ZHp X = TXopi1.

A truncation of an exact triangle X —f> Y- C—XXinTspisa
special octahedron

S
X7 (Cf)>nt1

Theorem (Vaknin’01)
There is always a truncation of an exact triangle.
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Ideas in the proof of Theorem A

The definition of py is forced by the following exact triangles, X € Txp,

Xonp1 = X = ZTH X = TXspaa.

A truncation of a virtual triangle X Ly Cr—xXXinTspisa
virtual octahedron

Theorem (Vaknin’01)
There is always a truncation of a virtual triangle. J
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Examples in the absence of t-structures

The natural comparison homomorphism Ki(E) — K?(DP(E)) need not
always be an isomorphism.
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Examples in the absence of t-structures

The natural comparison homomorphism Ki(E) — K?(DP(E)) need not
always be an isomorphism.

This example goes back to Deligne, [Vaknin’01] and [Breuning’08].

Let E = proj(R) be the category of f.g. free modules over R = k[¢]/¢?,
k afield.
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Examples in the absence of t-structures

The natural comparison homomorphism Ki(E) — K?(DP(E)) need not
always be an isomorphism.

This example goes back to Deligne, [Vaknin’01] and [Breuning’08].
Let E = proj(R) be the category of f.g. free modules over R = k[¢]/¢?,
k a field.

Theorem B

Ki(E) = R* = k x k* but K{(DP(E)) = k* and Ki(E) — KZ(DP(E)) is
the projection onto the second factor.

Fernando Muro K-theory and t-structures



Examples in the absence of t-structures

The natural comparison homomorphism Ki(E) — K?(DP(E)) need not
always be an isomorphism.

This example goes back to Deligne, [Vaknin’01] and [Breuning’08].
Let E = proj(R) be the category of f.g. free modules over R = k[¢]/¢?,
k a field.

Theorem B

Ki(E) = R* = k x k* but K{(DP(E)) = k* and Ki(E) — KZ(DP(E)) is
the projection onto the second factor.

D.(proj(R)) —— DI(D°(proj(R)))

J induced by —®gk J,N

D.(proj(k)) —— DI(D"(proj(k)))
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Key ingredient in the proof of Theorem B

The element (x,0) € K (E) is [R -5 R — 0] € Ds(proj(R)) and its
image in € K?(D?(E)) is [R ™5 R — 0 — TR] € DY(Db(proj(R))).
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Key ingredient in the proof of Theorem B

The element (x,0) € K (E) is [R -5 R — 0] € Ds(proj(R)) and its
image in € K?(D?(E)) is [R ™5 R — 0 — TR] € DY(Db(proj(R))).
This element is zero by the following relations:

+X\/)'R Jrlj
/

’\

R+ C.#
[RHHX&R—>O—>ZR] c.%4c.»0-1xC]
+IRSRLc. 3 xR +[Cc. % c. 50550
:[R—E>R—'>C 9 YR —[c.%¢c 5050
+c.8c. 50 xC A +[0 = 0 — 0 — x0]l¢d
C.= —-—-0-R-S>R—-0—--
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Examples in the absence of t-structures

The comparison homomorphism KZ(T) — K} (T) need not be an
isomorphism.
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Examples in the absence of t-structures

The comparison homomorphism KZ(T) — K} (T) need not be an
isomorphism.

If k is a field of char k = 2, T = DP(kA)/v is the category f.g. free
modules over R = k[e]/¢, T = the identity, and a 3-periodic exact
sequence is an exact triangle iff it is the direct sum of a contractible
triangle and a triangle of the following form

P— < P

NS
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Examples in the absence of t-structures

The comparison homomorphism KZ(T) — K} (T) need not be an
isomorphism.

If k is a field of char k = 2, T = DP(kA)/v is the category f.g. free
modules over R = k[e]/¢, T = the identity, and a 3-periodic exact
sequence is an exact triangle iff it is the direct sum of a contractible
triangle and a triangle of the following form

P— < P

Theorem C

KZ(T) = Ky (T) = 0 = K{(T) but there is a surjective homomorphism
det: KY(T) — k*/(k*)2.
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Sketch of the proof of Theorem C

The abelian 2-group DY(T) admits a contraction « defined by

alP|=[PSPS PSP
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Sketch of the proof of Theorem C

The abelian 2-group DY(T) admits a contraction « defined by

alP|=[PSPS PSP

We are going to define a morphism
det: DY(T) —s (0 3 k= /(k¥)? — 0)

which induces the claimed surjection.
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Sketch of the proof of Theorem C

The abelian 2-group DY(T) admits a contraction « defined by

alP|=[PSPSPSP

We are going to define a morphism

det: DY(T) — (0 3 k% /(k*)2 — 0)

which induces the claimed surjection.

Lemma
Virtual triangles in T are 3-periodic exact sequences

Po—2 P,

- TN A
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Sketch of the proof of Theorem C

For any virtual triangle V we have a short Py b P,
exact sequence of 3-periodic complexes \
edy edy
Py
VoV eV
L , . Po-———|-F-—--3pP
which induces k-module isomorphisms \ /
dy d
~ € P1 €
0n: Hpy1(eV) = Hn(eV).
ePy——-- :ngfffsepz
edpy edy
€P1
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Sketch of the proof of Theorem C

For any virtual triangle V we have a short Py b P,
exact sequence of 3-periodic complexes \
edy edy
Py
VoV eV
L , . Po-———|-F----3pP
which induces k-module isomorphisms \ /
dy d
~ € P1 €
On: Hpr1(eV) = Hp(eV).
edo
. Pp-————|-—---- +€P,
We define ‘ o
edpy edy
€P1

det(V) = det(0ndns10n2: Hn(eV) = Hp(eV)).
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Sketch of the proof of Theorem C

For any virtual triangle V we have a short Py o P
exact sequence of 3-periodic complexes \
edy edy
ePy
eVr— VeV
- , . Poo---|-2---—5P
which induces k-module isomorphisms \ /
do dy
€ P1 €
0n: Hpy1(eV) = Hn(eV). .
edzi e
We define P &
edpy edy
eP:
det(V) = det(6ndn+10ns2: Hn(eV) = Hp(eV)). !
Lemma
A virtual triangle V is exact iff det(V) = 1. J
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Sketch of the proof of Theorem C

Lemma
Givenu € k*,det(R> RS RS R) = w. J
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Sketch of the proof of Theorem C

Lemma
Givenu € k*,det(RS RS RS R) = w.

Lemma
Given a virtual octahedron as below we have

det(Y % Z = Cy — Y)det(X L Y = C; — X)

—det(X £ Z = Cyr — X)det(C; — Cgr — Cg — Cr) mod (k*)2.
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Sketch of the proof of Theorem C

Lemma
Givenu € k*,det(RS RS RS R) = w.

Lemma
Given a virtual octahedron as below we have

det(Y % Z = Cy — Y)det(X L Y = C; — X)

—det(X £ Z = Cyr — X)det(C; — Cgr — Cg — Cr) mod (k*)2.

2% //Cg Notice that
\\ c //
g ~ 9f . € € €
o N [RjRjRZR] € K¥(T)
Y +[R—- R— R = AR

X* Cr has determinant u € k> /(k*)2.
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The isomorphism in Ky

Example
The inverse isomorphism of

Ko(E) — Ko(C°(E))
Al »[--—>0—>A—=0—--]

is the Euler characteristic,

Ko(C®(E)) — Ko(E)
[ = Xo = Xoot = -] = > (=1)"[X0]

nez
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The bounded derived category of an exact category

Let E be an idempotent complete exact category and A its abelian
envelope.
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The bounded derived category of an exact category

Let E be an idempotent complete exact category and A its abelian
envelope. The bounded homotopy category K?(E) contains a thick
subcategory AP(E) spanned by the acyclic bounded complexes

q d
oo X =5 X T Xpq =

such that Kerd, € E for all n ¢ Z.
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The bounded derived category of an exact category

Let E be an idempotent complete exact category and A its abelian
envelope. The bounded homotopy category K?(E) contains a thick
subcategory AP(E) spanned by the acyclic bounded complexes

q d
oo X =5 X T Xpq =

such that Kerd, € E for all n ¢ Z.

The bounded derived category of E [Neeman’90] is defined as the

Verdier quotient
D°(E) = K°(E)/A°(E).
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The bounded derived category of an exact category

Let E be an idempotent complete exact category and A its abelian
envelope. The bounded homotopy category K?(E) contains a thick
subcategory AP(E) spanned by the acyclic bounded complexes

q d
oo X =5 X T Xpq =

such that Kerd, € E for all n ¢ Z.

The bounded derived category of E [Neeman’90] is defined as the
Verdier quotient
DP(E) = K°(E)/A°(E).

Example
DP(A) is the usual derived category of an abelian category.

Fernando Muro K-theory and t-structures



The bounded derived category of an exact category

Let E be an idempotent complete exact category and A its abelian
envelope. The bounded homotopy category K?(E) contains a thick
subcategory AP(E) spanned by the acyclic bounded complexes

q d
oo X =5 X T Xpq =

such that Kerd, € E for all n ¢ Z.

The bounded derived category of E [Neeman’90] is defined as the
Verdier quotient
DP(E) = K°(E)/A°(E).

Example
DP(A) is the usual derived category of an abelian category.
If R is a ring, DP(proj(R)) = K®(proj(R)).

Fernando Muro K-theory and t-structures



The bounded derived category of an exact category

Let E be an idempotent complete exact category and A its abelian
envelope. The bounded homotopy category K?(E) contains a thick
subcategory AP(E) spanned by the acyclic bounded complexes

q d
oo X =5 X T Xpq =

such that Kerd, € E for all n ¢ Z.

The bounded derived category of E [Neeman’90] is defined as the
Verdier quotient
DP(E) = K°(E)/A°(E).

Example

DP(A) is the usual derived category of an abelian category.
If R is a ring, DP(proj(R)) = K®(proj(R)).

D(Flat(R)) ~ K(Proj(R)) [Neeman’08]
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The isomorphism in Ky

Example
The inverse isomorphism of
Ko(A) — Ko(T)
[Al — [Al

is given by
Ko(T) — Ko(A)
[X] = > (—=1)"[HaX]

nEZ

sinceT = |J T>p and if X € T>, the exact triangle
nez

Xoni1 = X = Z"HpX — T X5 py1

yields the relation [X] = (—1)"[HnX] + [Xn1].
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Special octahedra

An octahedron made up from exact triangles

is special if the following triangles are exact

(=) (igr- 8) a9
y " 70 Cor Y
(") f 5
Cgf 7 X @ Cg (%1, q9) % x(94ar) ZCgf
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Virtual triangles

A triangle is contractible if it is a direct sum of triangles of the form

XAHWX5053%¥X, 0oYSyYyoso Zos0o3xzhsz
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Virtual triangles

A triangle is contractible if it is a direct sum of triangles of the form
XLHX50535X, 05YLY0 Zo0o53xZbh35z
A triangle is virtual if it is a direct summand with contractible
complement of a triangle
xLy- Lz % vx

such that we can replace each arrow by another morphism to obtain
an exact triangle.
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Virtual triangles

A triangle is contractible if it is a direct sum of triangles of the form

XLX50-35X, 05YLY—o0 Zo0-3¥Zbyz

A triangle is virtual if it is a direct summand with contractible
complement of a triangle

xSy L,z 9yvx

such that we can replace each arrow by another morphism to obtain
an exact triangle.
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Virtual triangles

A triangle is contractible if it is a direct sum of triangles of the form

XLX50-35X, 05YLY—o0 Zo0-3¥Zbyz

A triangle is virtual if it is a direct summand with contractible
complement of a triangle

XLy 7z 9 vx

such that we can replace each arrow by another morphism to obtain
an exact triangle.
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Virtual triangles

A triangle is contractible if it is a direct sum of triangles of the form
XLHX50535X, 05YLY0 Zo0o3xZbh35z
A triangle is virtual if it is a direct summand with contractible
complement of a triangle
x Ly Lz %X

such that we can replace each arrow by another morphism to obtain
an exact triangle.
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Virtual triangles

A triangle is contractible if it is a direct sum of triangles of the form
XLHX50535X, 05YLY0 Zo0o53xZbh35z
A triangle is virtual if it is a direct summand with contractible
complement of a triangle
xLy- Lz % vx

such that we can replace each arrow by another morphism to obtain
an exact triangle.
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Virtual triangles

A triangle is contractible if it is a direct sum of triangles of the form

XAHWX5053%¥X, 0oYSyYyoso Zos0o3xzhsz

A triangle is virtual if it is a direct summand with contractible
complement of a triangle

XLy Lz 9%yx

such that we can replace each arrow by another morphism to obtain
an exact triangle.
Example

XLy 4 C; % £ X is an exact triangle then X Lyl C;IxXis
a virtual triangle, but in general not exact.
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Virtual octahedra

An octahedron made up from virtual triangles

is virtual if the following triangles are virtual

(=) (igr- 8) a9
y " . zacC Cor Y
(") f 5
Cgf 7 X @ Cg (%1, q9) % x(94ar) ZCgf
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Examples of abelian 2-groups

Proposition
The 2-category of abelian 2-groups is 2-equivalent to the 2-category of

Picard groupoids.
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Examples of abelian 2-groups

Proposition
The 2-category of abelian 2-groups is 2-equivalent to the 2-category of

Picard groupoids.

@ Abelian group homomorphism B® B -2 A " B [Deligne’63-64]
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Examples of abelian 2-groups

Proposition
The 2-category of abelian 2-groups is 2-equivalent to the 2-category of

Picard groupoids.

@ Abelian group homomorphism B® B -2 A " B [Deligne’63-64]
o0 b 0 is freely generated by 1 € Z in degree n =1
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Examples of abelian 2-groups

Proposition
The 2-category of abelian 2-groups is 2-equivalent to the 2-category of

Picard groupoids.

@ Abelian group homomorphism B® B -2 A " B [Deligne’63-64]
o0 b 0 is freely generated by 1 € Z in degree n =1

0 ZRZ <—»> 72 9 7Zis freely generated by 1 € Z in degree n =0,
it is quasi-isomorphic to D, (proj(Z))
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Examples of abelian 2-groups

Proposition
The 2-category of abelian 2-groups is 2-equivalent to the 2-category of
Picard groupoids.

@ Abelian group homomorphism B® B -2 A " B [Deligne’63-64]

o0 Q 7 — 0 is freely generated by 1 € Z in degree n =1

0 ZRZ <—»> 72 9 7Zis freely generated by 1 € Z in degree n =0,

it is quasi-isomorphic to D, (proj(Z))

0 ZRZL <—»> R* %, Z, R a commutative local ring, (1,1) =1 € R*,

it is quasi-isomorphic to D, (proj(R))
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Examples of abelian 2-groups

Proposition

The 2-category of abelian 2-groups is 2-equivalent to the 2-category of
Picard groupoids.

@ Abelian group homomorphism B® B -2 A " B [Deligne’63-64]

o0 Q 7 — 0 is freely generated by 1 € Z in degree n =1

0 ZRZ <—»> 72 9 7Zis freely generated by 1 € Z in degree n =0,

it is quasi-isomorphic to D, (proj(Z))

0 ZRZL <—»> R* %, Z, R a commutative local ring, (1,1) =1 € R*,

it is quasi-isomorphic to D, (proj(R))

@ If Gis a group of nilpotency class two and H C G is a subgroup
containing the commutators [G, G] ¢ H

GP eGP Uy g
(a,b)=—b—a+b+a
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