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K -theory of rings

R a ring

K0(R) generated by the isomorphism classes of f.g. projective
R-modules mod [P ⊕Q] = [P] + [Q] [Grothendieck’57]

K1(R) the abelianization of GL(R) [Whitehead’50]

Kn(R) for all n ≥ 0 [Quillen’73]

Fernando Muro K -theory and t-structures



K -theory of rings

R a ring

K0(R) generated by the isomorphism classes of f.g. projective
R-modules mod [P ⊕Q] = [P] + [Q] [Grothendieck’57]

K1(R) the abelianization of GL(R) [Whitehead’50]

Kn(R) for all n ≥ 0 [Quillen’73]

Fernando Muro K -theory and t-structures



K -theory of rings

R a ring

K0(R) generated by the isomorphism classes of f.g. projective
R-modules mod [P ⊕Q] = [P] + [Q] [Grothendieck’57]

K1(R) the abelianization of GL(R) [Whitehead’50]

Kn(R) for all n ≥ 0 [Quillen’73]

Fernando Muro K -theory and t-structures



K -theory of rings

R a ring

K0(R) generated by the isomorphism classes of f.g. projective
R-modules mod [P ⊕Q] = [P] + [Q] [Grothendieck’57]

K1(R) the abelianization of GL(R) [Whitehead’50]

Kn(R) for all n ≥ 0 [Quillen’73]

Fernando Muro K -theory and t-structures



Quillen’s K -theory

E an exact category

K0(E) generated by the objects in E mod [B] = [B/A] + [A] for
each short exact sequence A�B�B/A [Grothendieck’57]

Kn(E) [Quillen’73] with a number of theorems allowing computations

Example
For E = proj(R) the category of f.g. projective R-modules we recover
Kn(R).

For E the category of vector bundles over a scheme X we obtain its
Quillen K -theory.
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Waldhausen’s K -theory

W a category with cofibrations and weak equivalences

K0(W) generated by the objects in W mod [B] = [B/A] + [A]
for each cofiber sequence A�B�B/A and [A] = [A′]
for each weak equivalence A ∼→A′ [Grothendieck’57]

Kn(W) [Waldhausen’73]

Example

For W = Cb(E) the category of bounded complexes in E we recover
Kn(E) [Gillet–Waldhausen] K0 .

For W the category of perfect complexes of globally finite Tor-amplitude
over a scheme X we obtain its [Thomason–Trobaugh’90] K -theory.
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K -theory of triangulated categories

T a triangulated category

K0(T) generated by the objects in T mod [Y ] = [Cf ] + [X ]

for each exact triangle X f→ Y → Cf → ΣX

Kn(T)? several definitions by [Neeman’97–01]

Example

For T = Db(E) the bounded derived category of an exact category
defn we have K0(E) ∼= K0(Cb(E)) ∼= K0(Db(E)).

If T has a bounded non-degenerate t-structure with heart A then
K0(A) ∼= K0(T) K0 .

For T = Perf(X ) the derived category of perfect complexes of globally
finite Tor-amplitude over a scheme K0(X ) ∼= K0(Perf(X )).
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K -theory of triangulated categories

Is there any reasonable higher K -theory of triangulated categories with
natural isomorphisms Kn(E) ∼= Kn(Db(E))? No [Schlichting’02]

There’s no higher K -theory satisfying agreement and localization

S� T� T/S  · · · → Kn(S)→ Kn(T)→ Kn(T/S)→ Kn−1(S)→ · · ·

There’s no higher K -theory satisfying agreement for n = 1 and
additivity

F ,G,H : S −→ T

F → G→ H → ΣF

}
 Kn(G) = Kn(H) + Kn(F ) : Kn(S)→ Kn(T)
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Neeman’s K -theories of triangulated categories

K d
n (T) based on the notions of exact or distinguished triangle

and special octahedron defn

K v
n (T) based on the notions of virtual triangle defn and virtual

octahedron defn

K w
n (T) requires the existence of certain models and is non-functorial!

w = Waldhausen. . . or wrong
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Comparison homomorphisms

K w
n (T)

if defined // K d
n (T)

natural // K v
n (T)

Kn(E) //

natural

55
K w

n (Db(E)) // K d
n (Db(E))

natural // K v
n (Db(E))

and if T has a t-structure with heart A, e.g. T = Db(A)

Kn(A)
if defined //

natural

66
K w

n (T)
if defined // K d

n (T)
natural // K v

n (T)

They are all isomorphisms for n = 0
Kn(A) ∼= K w

n (T) [Neeman’98]
Kn(A) is a direct summand of K d

n (T) and K v
n (T) [Neeman’00]

“Very embarrasingly, this is all we know. The first question would
be. . . what happens for n = 1?” [Neeman’05]
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Computing K0 and K1 simultaneously

For the different K -theories, we are going to define a chain complex of
non-abelian groups D∗ concentrated in dimensions n = 0,1 whose
homology is HnD∗ ∼= Kn.

Dab
0 ⊗Dab

0

〈·,·〉
��

K1 // // D1
∂ // D0 // // K0

The bracket 〈·, ·〉 controls commutators in D0 and D1 as well as the
action of the Hopf map

η : K0 ⊗ Z/2 −→ K1

x ⊗ 1 7→ 〈x , x〉
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Abelian 2-groups

An abelian 2-group C∗ consists of a diagram of groups

Cab
0 ⊗ Cab

0
〈·,·〉−→ C1

∂−→ C0

such that

〈a,b〉 = −〈b,a〉, a,b ∈ C0;

∂〈a,b〉 = −b − a + b + a;

〈∂c, ∂d〉 = −d − c + d + c, c,d ∈ C1.

The homology groups of C∗ are

H0C∗ = C0/∂(C1),

H1C∗ = Ker ∂.

Notice that C0 and C1 have nilpotency class 2 and H0C∗ and H1C∗ are
abelian. The group C0 acts on C1, ca = c + 〈a, ∂c〉. examples
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Abelian 2-groups

A morphism of abelian 2-groups f∗ : C∗ → D∗ is a commutative diagram

Cab
0 ⊗ Cab

0
〈·,·〉
//

f ab
0 ⊗f ab

0
��

C1
∂ //

f1
��

C0

f0
��

Dab
0 ⊗ Dab

0
〈·,·〉
// D1

∂ // D0

A homotopy α : f∗ ⇒ g∗ is a function α : C0 → D1 satisfying

α(a + b) = α(a)g0(b) + α(b),

∂α(a) = −g0(a) + f0(a),

α∂(c) = −g1(c) + f1(c).
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K0 and K1 of an exact category

We define the abelian 2-group D∗E by generators and relations:

n Generators Relations

0 [A] for any object in E ∂[A�B�B/A] = −[B] + [B/A] + [A]

1 [A�B�B/A] for any [B�C�C/B] + [A�B�B/A] =

short exact sequence [A�C�C/A] + [B/A�C/A�C/B][A]

for any 2-step filtration

K0 and K1 of an exact category

C/B

B/A !! !! C/A

""""

A !! !! B !! !!

""""

C

""""
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1 〈[A], [B]〉 = −[B�A⊕ B�A]
+[A�A⊕ B�B]

1 [0�0�0] = 0
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K d
0 and K d

1 of a triangulated category

The abelian 2-group Dd
∗ T is defined by generators and relations:

n Generators Relations
0 [X ] for any object ∂[X→Y→Cf→ΣX ] = −[Y ] + [Cf ] + [X ]

1 [X→Y→Cf→ΣX ] [Y→Z→Cg→ΣY ] + [X→Y→Cf→ΣX ] =

for any exact or [X→Z→Cgf→ΣX ]+[Cf→Cgf→Cg→ΣCf ][X ]

distinguised 4 for any special octahedron

X

Z

Cf

Cgf

Cg

Y

!!

""

f

##

gf

$$

%%

&&

''

+1

((

+1))

+1

**

g

++

+1

,,
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1 〈[X ], [Y ]〉 = −[Y → X ⊕ Y → X 0→ ΣY ]

+[X → X ⊕ Y → Y 0→ ΣX ]

1 [0→0→0→Σ0] = 0
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K v
0 and K v

1 of a triangulated category

The abelian 2-group Dv
∗ T is defined by generators and relations:

n Generators Relations
0 [X ] for any object ∂[X→Y→Cf→ΣX ] = −[Y ] + [Cf ] + [X ]

1 [X→Y→Cf→ΣX ] [Y→Z→Cg→ΣY ] + [X→Y→Cf→ΣX ] =

for any virtual 4 [X→Z→Cgf→ΣX ]+[Cf→Cgf→Cg→ΣCf ][X ]

for any virtual octahedron

X
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Cgf
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gf

$$
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''
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g
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1 〈[X ], [Y ]〉 = −[Y → X ⊕ Y → X 0→ ΣY ]

+[X → X ⊕ Y → Y 0→ ΣX ]

1 [0→0→0→Σ0] = 0
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The theorem of the heart for K1

Theorem A
If T is a triangulated category with a bounded non-degenerate
t-structure with heart A,

K1(A)
∼=−→ K d

1 (T)
∼=−→ K v

1 (T).

Corollary

If Spb is the stable homotopy category of spectra X such that⊕
n∈Z

πnX is a f.g. abelian group, K ?
1 (Spb) ∼= K ?

1 (Db(Z)) ∼= K1(Z) = Z/2.
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Ideas in the proof of Theorem A

The idea is to construct a strong deformation retraction

D?
∗(T)

α
**

p∗
// D∗(A),

i∗
oo p∗i∗ = id, α : i∗p∗ ⇒ id,

p0[X ] = · · · − [H−1X ] + [H0X ]− [H1X ] + · · · .

An exact triangle X f→ Y → Cf → ΣX induces a long exact sequence

· · · → HnX −→ HnY −→ HnCf −→ Hn−1X → · · ·

that we reindex

· · · → Am−1
φm−1−→ Am

φm−→ Am+1
φm+1−→ Am+1 → · · ·

with A0 = H0Y and

p1[X f→ Y → Cf → ΣX ] =
∑

m∈Z
(−1)m[Kerφm�Am� Kerφm+1]

mod 〈D0A,D0A〉.
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Ideas in the proof of Theorem A

The definition of p0 is forced by the following exact triangles, X ∈ T≥n,

X≥n+1 → X → ΣnHnX → ΣX≥n+1.

A truncation of an exact triangle X f→ Y → Cf → ΣX in T≥n is a
special octahedron

Theorem (Vaknin’01)
There is always a truncation of an exact triangle.
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The definition of p0 is forced by the following exact triangles, X ∈ T≥n,

X≥n+1 → X → ΣnHnX → ΣX≥n+1.

A truncation of a virtual triangle X f→ Y → Cf → ΣX in T≥n is a
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Theorem (Vaknin’01)
There is always a truncation of a virtual triangle.
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Examples in the absence of t-structures

The natural comparison homomorphism K1(E)→ K d
1 (Db(E)) need not

always be an isomorphism.

This example goes back to Deligne, [Vaknin’01] and [Breuning’08].

Let E = proj(R) be the category of f.g. free modules over R = k [ε]/ε2,
k a field.

Theorem B
K1(E) = R× = k × k× but K d

1 (Db(E)) = k× and K1(E)→ K d
1 (Db(E)) is

the projection onto the second factor.

D∗(proj(R)) //

��

induced by −⊗Rk

Dd
∗ (Db(proj(R)))

∼
��

D∗(proj(k))
∼ // Dd

∗ (Db(proj(k)))

Fernando Muro K -theory and t-structures



Examples in the absence of t-structures

The natural comparison homomorphism K1(E)→ K d
1 (Db(E)) need not

always be an isomorphism.

This example goes back to Deligne, [Vaknin’01] and [Breuning’08].

Let E = proj(R) be the category of f.g. free modules over R = k [ε]/ε2,
k a field.

Theorem B
K1(E) = R× = k × k× but K d

1 (Db(E)) = k× and K1(E)→ K d
1 (Db(E)) is

the projection onto the second factor.

D∗(proj(R)) //

��

induced by −⊗Rk

Dd
∗ (Db(proj(R)))

∼
��

D∗(proj(k))
∼ // Dd

∗ (Db(proj(k)))

Fernando Muro K -theory and t-structures



Examples in the absence of t-structures

The natural comparison homomorphism K1(E)→ K d
1 (Db(E)) need not

always be an isomorphism.

This example goes back to Deligne, [Vaknin’01] and [Breuning’08].

Let E = proj(R) be the category of f.g. free modules over R = k [ε]/ε2,
k a field.

Theorem B
K1(E) = R× = k × k× but K d

1 (Db(E)) = k× and K1(E)→ K d
1 (Db(E)) is

the projection onto the second factor.

D∗(proj(R)) //

��

induced by −⊗Rk

Dd
∗ (Db(proj(R)))

∼
��

D∗(proj(k))
∼ // Dd

∗ (Db(proj(k)))

Fernando Muro K -theory and t-structures



Examples in the absence of t-structures

The natural comparison homomorphism K1(E)→ K d
1 (Db(E)) need not

always be an isomorphism.

This example goes back to Deligne, [Vaknin’01] and [Breuning’08].

Let E = proj(R) be the category of f.g. free modules over R = k [ε]/ε2,
k a field.

Theorem B
K1(E) = R× = k × k× but K d

1 (Db(E)) = k× and K1(E)→ K d
1 (Db(E)) is

the projection onto the second factor.

D∗(proj(R)) //

��

induced by −⊗Rk

Dd
∗ (Db(proj(R)))

∼
��

D∗(proj(k))
∼ // Dd

∗ (Db(proj(k)))

Fernando Muro K -theory and t-structures



Key ingredient in the proof of Theorem B

The element (x ,0) ∈ K1(E) is [R
1+xε
� R � 0] ∈ D1(proj(R)) and its

image in ∈ K d
1 (Db(E)) is [R 1+xε−→ R → 0→ ΣR] ∈ Dd

1 (Db(proj(R))).
This element is zero by the following relations:

[R 1+xε−→ R → 0→ ΣR] [Cε
id→ Cε → 0→ ΣCε]

+[R ε→ R i→ Cε
q→ ΣR] +[Cε

id→ Cε → 0→ ΣCε]

= [R ε→ R i→ Cε
q→ ΣR] = [Cε

id→ Cε → 0→ ΣCε]

+[Cε
id→ Cε → 0→ ΣCε]

[R] +[0→ 0→ 0→ Σ0][Cε]

Cε = · · · → 0→ R ε−→ R → 0→ · · ·
Fernando Muro K -theory and t-structures



Key ingredient in the proof of Theorem B

The element (x ,0) ∈ K1(E) is [R
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� R � 0] ∈ D1(proj(R)) and its

image in ∈ K d
1 (Db(E)) is [R 1+xε−→ R → 0→ ΣR] ∈ Dd

1 (Db(proj(R))).
This element is zero by the following relations:

R

R

Cε

Cε

0

R

i
!!

""

ε

##

ε

$$

id

%%

i
&&

''

+1

((

+1
q

))

q +1

**

1+xε

++

+1

,,

Cε = · · · → 0 → R ε−→ R → 0 → · · ·
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Cε

Cε

0

0

0

Cε

!!

""

id

##

id

$$

%%

&&

''

+1

((

+1))

+1

**

id

++

+1

,,
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[R 1+xε−→ R → 0→ ΣR] [Cε
id→ Cε → 0→ ΣCε]

+[R ε→ R i→ Cε
q→ ΣR] +[Cε

id→ Cε → 0→ ΣCε]

= [R ε→ R i→ Cε
q→ ΣR] = [Cε

id→ Cε → 0→ ΣCε]

+[Cε
id→ Cε → 0→ ΣCε]

[R] +[0→ 0→ 0→ Σ0][Cε]

Cε = · · · → 0→ R ε−→ R → 0→ · · ·
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Examples in the absence of t-structures

The comparison homomorphism K d
1 (T)→ K v

1 (T) need not be an
isomorphism.

If k is a field of char k = 2, T = Db(kA2)/ν is the category f.g. free
modules over R = k [ε]/ε2, Σ = the identity, and a 3-periodic exact
sequence is an exact triangle iff it is the direct sum of a contractible
triangle and a triangle of the following form

P ε // P

ε
��

P
ε

__

Theorem C
K d

0 (T) = K v
0 (T) = 0 = K d

1 (T) but there is a surjective homomorphism
det : K v

1 (T)� k×/(k×)2.
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Sketch of the proof of Theorem C

The abelian 2-group Dd
∗ (T) admits a contraction α defined by

α[P] = [P ε→ P ε→ P ε→ P].

We are going to define a morphism

det : Dv
∗ (T) −→ (0

〈·,·〉→ k×/(k×)2 → 0)

which induces the claimed surjection.

Lemma
Virtual triangles in T are 3-periodic exact sequences

V =

P0
d2 // P2

d1~~

P1

d0

``
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Sketch of the proof of Theorem C

For any virtual triangle V we have a short
exact sequence of 3-periodic complexes

εV � V � εV

which induces k -module isomorphisms

δn : Hn+1(εV ) ∼= Hn(εV ).

We define

det(V ) = det(δnδn+1δn+2 : Hn(εV ) ∼= Hn(εV )).

εP0
εd2 !!

""

""

εP2""

""

εd1
##

εP1""

""

εd0

$$

P0

ε

""""

d2 !! P2

ε

""""

d1
##

P1

ε

""""

d0

$$

εP0
εd2 !! εP2

εd1
##

εP1

εd0

$$
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Lemma
A virtual triangle V is exact iff det(V ) = 1.
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Lemma
A virtual triangle V is exact iff det(V ) = 1.
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Sketch of the proof of Theorem C

Lemma

Given u ∈ k×, det(R ε→ R ε→ R uε→ R) = u.

Lemma
Given a virtual octahedron as below we have

det(Y
g→ Z → Cg → Y ) det(X f→ Y → Cf → X )

= det(X
gf→ Z → Cgf → X ) det(Cf → Cgf → Cg → Cf ) mod (k×)2.

Notice that

−[R ε→ R ε→ R ε→ R]

+[R ε→ R ε→ R uε→ R]
∈ K v

1 (T)

has determinant u ∈ k×/(k×)2.
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The isomorphism in K0

Example
The inverse isomorphism of

K0(E) −→ K0(Cb(E))

[A] 7→ [· · · → 0→ A→ 0→ · · · ]

is the Euler characteristic,

K0(Cb(E)) −→ K0(E)

[· · · → Xn → Xn−1 → · · · ] 7→
∑
n∈Z

(−1)n[Xn]

back
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The bounded derived category of an exact category

Let E be an idempotent complete exact category and A its abelian
envelope. The bounded homotopy category K b(E) contains a thick
subcategory Ab(E) spanned by the acyclic bounded complexes

· · · → Xn+1
dn+1−→ Xn

dn−→ Xn−1 → · · ·
such that Ker dn ∈ E for all n ∈ Z.

The bounded derived category of E [Neeman’90] is defined as the
Verdier quotient

Db(E) = K b(E)/Ab(E).

Example

Db(A) is the usual derived category of an abelian category.

If R is a ring, Db(proj(R)) = K b(proj(R)).

D(Flat(R)) ' K (Proj(R)) [Neeman’08] back .
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The isomorphism in K0

Example
The inverse isomorphism of

K0(A) −→ K0(T)

[A] 7→ [A]

is given by

K0(T) −→ K0(A)

[X ] 7→
∑
n∈Z

(−1)n[HnX ]

since T =
⋃

n∈Z
T≥n and if X ∈ T≥n the exact triangle

X≥n+1 → X → ΣnHnX → ΣX≥n+1

yields the relation [X ] = (−1)n[HnX ] + [X≥n+1]. back
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Special octahedra

An octahedron made up from exact triangles

X

Z

Cf

Cgf

Cg

Y

if %%

ig
//

f

66

gf

OO

ḡ

\\

igf

((

f̄
99

+1

��

+1
qf

oo

qgf
+1

||

g

bb

qg

+1

��

is special if the following triangles are exact back

Y Z ⊕ Cf//
( g
−if

)
Cgf//

(igf , ḡ)
ΣY//

qg f̄

Cgf ΣX ⊕ Cg//
(

qgf
−f̄

)
ΣY//

(Σf , qg)
ΣCgf//

Σ(ḡqf )
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Virtual triangles

A triangle is contractible if it is a direct sum of triangles of the form

X 1→ X → 0→ ΣX , 0→ Y 1→ Y → 0, Z → 0→ ΣZ 1→ ΣZ .

A triangle is virtual if it is a direct summand with contractible
complement of a triangle

X f−→ Y i−→ Z
q−→ ΣX

such that we can replace each arrow by another morphism to obtain
an exact triangle.

Example

If X f→ Y i→ Cf
q→ ΣX is an exact triangle then X f→ Y i→ Cf

−q→ ΣX is
a virtual triangle, but in general not exact.

back
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Virtual octahedra

An octahedron made up from virtual triangles
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ΣY//

qg f̄

Cgf ΣX ⊕ Cg//
(

qgf
−f̄

)
ΣY//

(Σf , qg)
ΣCgf//
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Examples of abelian 2-groups

Proposition
The 2-category of abelian 2-groups is 2-equivalent to the 2-category of
Picard groupoids.

Abelian group homomorphism B ⊗ B 0−→ A f−→ B [Deligne’63–64]

0
〈·,·〉−→ Z −→ 0 is freely generated by 1 ∈ Z in degree n = 1

Z⊗ Z
〈·,·〉
� Z/2 0−→ Z is freely generated by 1 ∈ Z in degree n = 0,

it is quasi-isomorphic to D∗(proj(Z))

Z⊗ Z
〈·,·〉
� R× 0−→ Z, R a commutative local ring, 〈1,1〉 = 1 ∈ R×,

it is quasi-isomorphic to D∗(proj(R))

If G is a group of nilpotency class two and H ⊂ G is a subgroup
containing the commutators [G,G] ⊂ H back

Gab ⊗Gab 〈·,·〉−→ H incl.−→ G
〈a,b〉 = −b − a + b + a
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