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Categorification of determinants

From Wikipedia:

“In mathematics, categorification refers to the process of replacing
set-theoretic theorems by category-theoretic analogues.”

Crane–Yetter, Examples of categorification, Cahiers de Topologie et
Géometrie Différentielle Catégoriques 39 (1998), no. 1, 3–25.

Knudsen–Mumford, The projectivity of the moduli space of stable
curves I. Math. Scand. 39 (1976), no. 1, 19–55.

Deligne, Le déterminant de la cohomologie, Contemp. Math. 67
(1987), 93–177.
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Categorification of determinants

n × n matrix M ! f : kn → kn homomorphism

If k = R, |det(M)| is the scale factor for f .

Let ω = e1 ∧ · · · ∧ en ∈ ∧nkn be the volume form,

∧nf : ∧n kn −→ ∧nkn,

ω 7→ det(M)ω.
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Categorification of determinants

For any f. d. vector space A and any isomorphism f : A ∼→B we set

det(A) = (∧dim AA,dim A),

det(f ) = ∧dim Af ,

in the category linesZ of graded lines:
Objects (L,n) are given by L a vector space of dim = 1 and n ∈ Z.
Morphisms (L,n)→ (L′,n′) are isomorphisms L→ L′ if n = n′ and
∅ otherwise.

The functor
det : vectiso −→ linesZ

categorifies determinants.
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Categorification of determinants

The functor det satisfies further properties.

The category linesZ is a Picard groupoid, i.e. a symmetric categorical
group, with tensor product

(L,n)⊗ (L′,n′) = (L⊗ L′,n + n′),

and commutativity constraint twisted by a sign

(L,n)⊗ (L′,n′) comm.−→ (L′,n′)⊗ (L,n),

v ⊗ w 7→ (−1)nn′w ⊗ v .
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Categorification of determinants

Given a s. e. s.
∆ = A

i
� B

p
� B/A

we have an additivity isomorphism

det(∆): det(B/A)⊗ det(A) −→ det(B)

defined as follows. Choose bases {v1, . . . , vp} of B/A and
{w1, . . . ,wq} of A, and set

(v1 ∧ · · · ∧ vp)⊗ (w1 ∧ · · · ∧ wq)
det(∆)7→ v ′1 ∧ · · · ∧ v ′p ∧ i(w1) ∧ · · · ∧ i(wq),

where p(v ′r ) = vr .
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Categorification of determinants

Additivity isomorphisms are natural with respect to s. e. s.
isomorphisms,

A // // B // // B/A

A′
��

∼ f

// // B′
��

∼ g

// // B′/A′
��

∼ h  

det(B/A)⊗ det(A)
det(∆)

//

det(h)⊗det(f )
��

det(B)

det(g)
��

det(B′/A′)⊗ det(A′)
det(∆′)

// det(B′)
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Categorification of determinants

They are associative, i.e. for each 2-step filtration A�B�C the
following diagram commutes

det(C)
ee

det(A�C�C/A)

LLLLLLLLLLLLLLLL99

det(B�C�C/B)

rrrrrrrrrrrrrrrr

det(C/B)⊗ det(B)
OO

1⊗det(A�B�B/A)

det(C/A)⊗ det(A)
OO

det(B/A�C/A�C/B)⊗1

det(C/B)⊗ (det(B/A)⊗ det(A)) oo

assoc.

of ⊗

(det(C/B)⊗ det(B/A))⊗ det(A)
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Categorification of determinants

They are commutative, i.e. the following diagram commutes

det(A⊕ B)
ee

det(A�A⊕B�B)

LLLLLLLLLLLLLLLL99

det(B�A⊕B�A)

rrrrrrrrrrrrrrrr

det(A)⊗ det(B)
comm. of ⊗

// det(B)⊗ det(A)
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Determinant for exact categories

What’s special about det above?

linesZ is a Picard groupoid,
vect has short exact sequences.

Definition (Deligne’87)
Let E be an abelian or exact category and P a Picard groupoid. A
determinant is a functor

det : Eiso −→ P

together with an additivity isomorphism

det(∆): det(B/A)⊗ det(A) −→ det(B)

for each s. e. s. ∆ = A�B�B/A in E satisfying naturality,
associativity and commutativity.
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Determinants for exact categories

Example
E = vect(X ) the exact category of vector bundles over X,
P = Pic(X ) the category of graded line bundles (L,n), with L a
line bundle over X and n : X → Z a locally constant map.

One can define a determinant functor of vect(X ) with values on
Pic(X ) as above, by using exterior powers.

In the special case X = Spec(R), E = proj(R) and P = Pic(R) is the
Picard groupoid of graded projective R-modules of constant rank 1.

What if R is noncommutative? Do we have any canonical P in this
case?
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Determinants for exact categories

Definition
A natural isomorphism between determinant functors is a natural
isomorphism

τ : det⇒ det′ : Eiso −→ P,

such that for any s. e. s. ∆ = A�B�B/A the following diagram
commutes

det(B/A)⊗ det(A)
det(∆)

//

τ(A)⊗τ(B/A)
��

det(B)

τ(B)
��

det′(B/A)⊗ det′(A)
det′(∆)

// det′(B)

Determinant functors and natural iso. form a groupoid det(E,P).
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Determinants for exact categories

Theorem (Deligne’87)
The 2-functor

det(E,−) : PicGrd −→ Grd

is representable.

A representing Picard groupoid V (E) is called a category of virtual
objects.

Example
V (proj(R)) ' Pic(R) if the commutative ring R is local, semisimple, or
the ring of integers in a number field.
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Determinants for exact categories

The category of virtual objects comes equipped with a universal
determinant functor

det : Eiso −→ V (E)

such that any other determinant functor det′ : E→ P factorises as

E
det′

��
========

det

}}zzzzzzzz

V (E) f // P
F

+3_____ _____
=

E
det′

��
========

det

}}zzzzzzzz

V (E) g // P
G

+3_____ _____
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∃ ! ��
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Determinants for exact categories

The homotopy groups of a Picard groupoid P are

π0P = isomorphism classes of objects, the sum is induced by ⊗,
π1P = AutP(I), the automorphisms of the unit object.

The Postnikov invariant of P is the homomorphism

π0P η−→ π1P,

such that
η(x)⊗ x ⊗ x = comm. : x ⊗ x −→ x ⊗ x .

Example

π0Pic(X ) ∼= H0(X ,Z)⊕ H1(X ,O×X ) and π1Pic(X ) ∼= O×X (X ).
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Determinants for exact categories

Theorem (Deligne’87)
There are natural isomorphisms

π0V (E) ∼= K0(E),

π1V (E) ∼= K1(E),

such that the Postnikov invariant of V (E) corresponds to the action of
the stable Hopf map 0 6= η ∈ π1(S) ∼= Z/2 on Quillen’s K -theory.

Actually Segal’s classifying spectrum B(V (E)) is naturally isomorphic
to the 1-type of Quillen’s K -theory spectrum K (E) in the stable
homotopy category.
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Determinants for complexes

Knudsen–Mumford’76 tackled the problem of defining the determinant
of a bounded complex A∗ in E = vect(X ),

· · · → An−1 d−→ An d−→ An+1 → · · · ,

det(A∗) =
⊗
n∈Z

det(An)(−1)n
.

However given a quasi-isomorphim f : A∗ ∼→B∗ it is not obvious to
produce an isomorphism det(f ) : det(A∗)→ det(B∗), etc. . .
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Determinants for Waldhausen categories

Given an exact category E, the category of bounded complexes Cb(E)
is a Waldhausen category:

a weak equivalence is a quasi-isomorphism f : A∗ ∼→B∗,
a cofibration is a levelwise admissible monomorphism f : A∗�B∗,
a cofiber sequence is a levelwise s. e. s. A∗�B∗�B∗/A∗.

Exact categories are also examples of Waldhausen categories, the
weak equivalences are the isomorphisms and the cofibrations are the
admissible monomorphisms.
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Determinants for Waldhausen categories

Definition (Knudsen’02, M–Tonks–Witte’08)
Let W be a Waldhausen category and P a Picard groupoid. A
determinant is a functor

det : Wwe −→ P

together with an additivity isomorphism

det(∆): det(B/A)⊗ det(A) −→ det(B)

for each cofiber sequence ∆ = A�B�B/A in W satisfying naturality
with respect to weak equivalences of cofiber sequences, associativity
and commutativity.

One can similarly define natural isomorphisms between these
determinant functors in order to obtain a groupoid det(W,P).
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Determinants for Waldhausen categories

Theorem (M–Tonks–Witte’08)
The 2-functor

det(W,−) : PicGrd −→ Grd

is representable.

Let V (W) be a representative.

Theorem (M–Tonks’07)
There are natural isomorphisms

π0V (W) ∼= K0(W),

π1V (W) ∼= K1(W),

such that the Postnikov invariant of V (W) corresponds to the action of
the stable Hopf map 0 6= η ∈ π1(S) ∼= Z/2 on Waldhausen’s K -theory.
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Determinants for Waldhausen categories

Actually Segal’s classifying spectrum B(V (W)) is naturally isomorphic
to the 1-type of Waldhausen’s K -theory spectrum K (W) in the stable
homotopy category.

Corollary (Knudsen–Mumford’76, Knudsen’02)

The inclusion E ⊂ Cb(E) induces a natural equivalence

det(Cb(E),P)
∼−→ det(E,P).

It follows from the Gillet–Waldhausen theorem which asserts that the
inclusion induces an isomorphism K∗(E) ∼= K∗(Cb(E)).
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Determinants for derived categories

The bounded derived category Db(E) is obtained from Cb(E) by
inverting quasi-isomorphisms, therefore a determinant functor
det : Cb(E)we → P induces a functor

det : Db(E)iso −→ P.

What about additivity isomorphisms in terms of Db(E)?

The category Db(E) is triangulated, it is equipped with exact triangles,

A∗→B∗→C∗→A∗[1],

satisfying some well-known axioms.
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Determinants for triangulated categories

Definition (Breuning’06)
Let T be a triangulated category and P a Picard groupoid. A
determinant is a functor

det : Tiso −→ P

together with an additivity isomorphism

det(∆): det(C)⊗ det(A) −→ det(B)

for each exact triangle ∆ = A→B→C→A[1] in T satisfying naturality
with respect to triangle isomorphisms, associativity with respect to
octahedral diagrams, and commutativity.

One can similarly define natural isomorphisms between these
determinant functors in order to obtain a groupoid det(T,P).
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for each exact triangle ∆ = A→B→C→A[1] in T satisfying naturality
with respect to triangle isomorphisms, associativity with respect to
octahedral diagrams, and commutativity.

One can similarly define natural isomorphisms between these
determinant functors in order to obtain a groupoid det(T,P).
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Determinants for triangulated categories

Theorem (Breuning’06)
The 2-functor

det(T,−) : PicGrd −→ Grd

is representable.

Let V (T) be a representative.

Theorem (M–Tonks–Witte’08)
There are natural isomorphisms with Neeman’s K -theory,

π0V (T) ∼= K0(T),

π1V (T) ∼= K1(T),

such that the Postnikov invariant of V (T) corresponds to the action of
the stable Hopf map 0 6= η ∈ π1(S) ∼= Z/2 on Neeman’s K -theory.
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Determinants for triangulated categories

Corollary (Breuning’06)

Let A be an abelian category. The inclusion A ⊂ Db(A) induces a
natural equivalence

det(Db(A),P)
∼−→ det(A,P).

It follows from Neeman’s heart theorem which asserts that the
inclusion induces an isomorphism K∗(A) ∼= K∗(Db(A)). Actually we
can replace Db(A) by any triangulated category T with a
non-degenerate bounded t-structure with heart A.
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Determinants for triangulated categories

This corollary is not true for arbitrary exact categories.

Let E = proj(k [ε]/(ε2)) be the category of f. g. free modules over the
ring of dual numbers. For this exact category,

k ↪→ K1(E)
incl.
� K1(Db(E)) ∼= k×,

the kernel is generated by det(1 + ε).

Schlichting showed that there is no possible K -theory for triangulated
categories satisfying the usual theorems and agreeing with
Waldhausen’s. This example explicitly shows that Neeman’s K -theory
of triangulated categories does not satisfy agreement.
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Determinants for derived categories are not perfect. . .

Hinich–Schechtman’85 said: “It seems that the derived category is too
coarse even to recover from it the group K1”.

There is an intermediate approach interpolating between Cb(E) and
Db(E).

More generally, this approach interpolates between W and its
homotopy category Ho(W), obtained by inverting weak equivalences.
It uses the Waldhausen category S2W of cofiber sequences in W and
its homotopy category Ho(S2W).
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Derived determinants

Definition (M–Tonks–Witte’08)
Let W be a Waldhausen category and P a Picard groupoid. A derived
determinant is a functor

det : Ho(W)iso −→ P

together with an additivity isomorphism

det(∆): det(B/A)⊗ det(A) −→ det(B)

for each cofiber sequence ∆ = A�B�B/A in W satisfying naturality
with respect to isomorphisms in Ho(S2W), associativity and
commutativity.

One can similarly define natural isomorphisms between these
determinant functors in order to obtain a groupoid detder(W,P).
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Determinants for derivators

A Grothendieck derivator is a 2-functor

D : Catop −→ Cat,

satisfying some properties modelled on the features of the canonical
example,

D(W) : Catop −→ Cat,
J 7→ Ho(WJ),

where W is a Waldhausen category with cylinders and a saturated
class of weak equivalences.

There is a notion of determinant functor for derivators such that
det(D(W),P) ' detder(W,P).

Maltsiniotis’07 and Garkusha’05 defined a K -theory for derivators.
Maltsiniotis conjectured agreement with Waldhausen K -theory.

Fernando Muro On determinants (as functors)



Determinants for derivators

A Grothendieck derivator is a 2-functor

D : Catop −→ Cat,

satisfying some properties modelled on the features of the canonical
example,

D(W) : Catop −→ Cat,
J 7→ Ho(WJ),

where W is a Waldhausen category with cylinders and a saturated
class of weak equivalences.

There is a notion of determinant functor for derivators such that
det(D(W),P) ' detder(W,P).

Maltsiniotis’07 and Garkusha’05 defined a K -theory for derivators.
Maltsiniotis conjectured agreement with Waldhausen K -theory.

Fernando Muro On determinants (as functors)



Determinants for derivators

A Grothendieck derivator is a 2-functor

D : Catop −→ Cat,

satisfying some properties modelled on the features of the canonical
example,

D(W) : Catop −→ Cat,
J 7→ Ho(WJ),

where W is a Waldhausen category with cylinders and a saturated
class of weak equivalences.

There is a notion of determinant functor for derivators such that
det(D(W),P) ' detder(W,P).

Maltsiniotis’07 and Garkusha’05 defined a K -theory for derivators.
Maltsiniotis conjectured agreement with Waldhausen K -theory.

Fernando Muro On determinants (as functors)



Derived determinants

Theorem (M–Tonks–Witte’08)
The 2-functor

detder(W,−) : PicGrd −→ Grd

is representable.

Let V der(W) be a represtentative.

Theorem (M’08)
There are natural isomorphisms

π0V der(W) ∼= K0(D(W)),

π1V der(W) ∼= K1(D(W)),

such that the Postnikov invariant of V der(W) corresponds to the action
of the stable Hopf map 0 6= η ∈ π1(S) ∼= Z/2 on Maltsiniotis’s K -theory.
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Derived determinants and Maltsiniotis’s first conjecture

Using explicit very small models for the categories of virtual objects we
showed.

Theorem (M’08)

There is a natural equivalence V (W) ' V der(W).

Corollary (Maltsiniotis’s first conjecture in low dimensions)
There are natural isomorphisms

K0(W) ∼= K0(D(W)),

K1(W) ∼= K1(D(W)).
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Small models for virtual objects

A stable quadratic module C∗ is a diagram

Cab
0 ⊗ Cab

0
〈·,·〉−→ C1

∂−→ C0 satisfying
∂〈c1,d1〉 = [d1, c1],

〈∂(c2), ∂(d2)〉 = [d2, c2],
〈c1,d1〉 = −〈d1, c1〉.

The loop Picard groupoid ΩC∗ has object set C0 and morphisms

(c0, c1) : c0 + ∂(c1)→ c0,

(c0, c1)(c0 + ∂(c1), c′1) = (c0, c1 + c′1),

c0 ⊗ c′0 = c0 + c′0,
(c0, c1)⊗ (c′0, c

′
1) = (c0 + c′0, c1 + c′1 + 〈c′0, ∂(c1)〉),

comm. = (c0 + c′0, 〈c0, c′0〉) : c′0 + c0 → c0 + c′0.
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Small models for virtual objects

The homotopy groups of the loop Picard groupoid ΩC∗ are

π0ΩC∗ = C0/∂(C1),

π1ΩC∗ = Ker ∂,

and the Postnikov invariant is

η : π0ΩC∗ −→ π1ΩC∗,
x 7→ 〈x , x〉.
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Small models for virtual objects

The category of virtual objects V (W) ' ΩD∗W, where D∗W is the
stable quadratic module generated in dimension zero by the symbols

[A] for any object in W,
and in dimension one by

[A ∼→A′] for any weak equivalence,
[A�B�B/A] for any cofiber sequence.

These generators correspond to bisimplices of total degree 1 and 2 in
Waldhausen’s S.-construction, which defines the K -theory spectrum
K (W). bisimplices
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Small models for virtual objects

The generating symbols satisfy six kinds of relations, corresponding to
the laws of a determinant functor.

The trivial relations formulas bisimplices .
The boundary relations formulas bisimplices .
Composition of weak equivalences formula bisimplex .
Weak equivalences of cofiber sequences formula bisimplex .
Composition of cofiber sequences formula bisimplex .
Coproducts formula .

skip
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The trivial relations

[∗] = 0.

[A1A→A] = 0.

[A1A→A�∗] = 0, [∗�A1A→A] = 0.

This proves that the universal det preserves identities. back
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The boundary relations

∂[A ∼→A′] = −[A′] + [A].
∂[A�B�B/A] = −[B] + [B/A] + [A].

This allows to define the universal det as

det(A) = [A],

det(A ∼→A′) = ([A′], [A ∼→A′]),
det(A�B�B/A) = ([B], [A�B�B/A]).

back
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Composition of weak equivalences

For any pair of composable weak equivalences A ∼→A′ ∼→A′′,

[A ∼→A′′] = [A′ ∼→A′′] + [A ∼→A′].

This proves that the universal det preserves composition.
back
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Weak equivalences of cofiber sequences

For any commutative diagram in W as follows

A // //

∼
��

B // //

∼
��

B/A

∼
��

A′ // // B′ // // B′/A′

we have

[A′�B′�B′/A′]
[A ∼→A′] + [B/A ∼→B′/A′]

+〈[A],−[B′/A′] + [B/A]〉 = [B ∼→B′]
+[A�B�B/A].

This proves that additivity isomorphisms are natural. back
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Composition of cofiber sequences

For any commutative diagram consisting of four obvious cofiber
sequences in W as follows

C/B

B/A // // C/A

OOOO

A // // B // //

OOOO

C

OOOO

we have (this implies associativity of additivity isomorphisms)

[B�C�C/B]

+[A�B�B/A] = [A�C�C/A]

+[B/A�C/A�C/B]

+〈[A],−[C/A] + [C/B] + [B/A]〉.
back
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Coproducts

For any pair of objects A,B in W

〈[A], [B]〉 = −[A
i1
�A ∨ B

p2
�B] + [B

i2
�A ∨ B

p1
�A].

This implies commutativity of additivity isomorphisms. back
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Bisimplices of total degree 1 and 2

A

A′

A

∼

OO

A

B
����������

����������
B/A

OO

OO

// //

back to generators back to relations
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Degenerate bisimplices of total degree 1 and 2

∗

A

A

∼

∗

A
����������

����������
A

OO

OO

A

A
����������

����������
∗// //

back
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Bisimplex of bidegree (1, 2)

A′′?
?

?
?

?
?

?
? _____ A′_____ _____ _____

???????????????
�

�
�

�
�

�
�

� A

���������������

∼

??�
�

�
�

�
�

∼

__?
?

?
?

?

∼

OO

back
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Bisimplex of bidegree (2, 1)

B′

A′
???????

??????? B′/A′
ooooooooooo

ooooooooooo

___ ___ B___ ___ ______

A

????????

???????? B/A
oooooooooooo

oooooooooooo

77

77oooooooo

77
oo

77o
o

�� ��
????

�� ��
?

?
?

∼

OO

∼

OO

∼

�
�
�
�
�
�
�

OO�
�
�
�

back
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Bisimplex of bidegree (3, 0)

A
TTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTT

Cttttttttttttttttttt

ttttttttttttttttttt

B/A
ooooooooooo

ooooooooooo

C/A

C/B??????????????

??????????????

________ B_____ __ ___ ________
TTT

** **TTTTT

________ // //____

77

77oooo
OO

OO

__

__?
?

?
?

?

__

__??????????

** **TTTTTTTTTTTTTT
77 77oooooooo

back
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On determinants (as functors)

The End
Thanks for your attention!
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