On determinants (as functors)

Fernando Muro

Universitat de Barcelona Dept. Àlgebra i Geometria

V Seminar on Categories and Applications Pontevedra, September 2008

(* (E)) * (E))

ъ

From Wikipedia:

"In mathematics, **categorification** refers to the process of replacing set-theoretic theorems by category-theoretic analogues."

Crane-Yetter, *Examples of categorification*, Cahiers de Topologie et Géometrie Différentielle Catégoriques 39 (1998), no. 1, 3-25.

Knudsen–Mumford, *The projectivity of the moduli space of stable curves I*. Math. Scand. 39 (1976), no. 1, 19–55.

Deligne, *Le déterminant de la cohomologie*, Contemp. Math. 67 (1987), 93–177.

・ 同 ト ・ ヨ ト ・ ヨ ト …

From Wikipedia:

"In mathematics, **categorification** refers to the process of replacing set-theoretic theorems by category-theoretic analogues."

Crane–Yetter, *Examples of categorification*, Cahiers de Topologie et Géometrie Différentielle Catégoriques 39 (1998), no. 1, 3–25.

Knudsen–Mumford, *The projectivity of the moduli space of stable curves I*. Math. Scand. 39 (1976), no. 1, 19–55.

Deligne, *Le déterminant de la cohomologie*, Contemp. Math. 67 (1987), 93–177.

イロト イポト イヨト イヨト 三日

From Wikipedia:

"In mathematics, **categorification** refers to the process of replacing set-theoretic theorems by category-theoretic analogues."

Crane–Yetter, *Examples of categorification*, Cahiers de Topologie et Géometrie Différentielle Catégoriques 39 (1998), no. 1, 3–25.

Knudsen–Mumford, *The projectivity of the moduli space of stable curves I*. Math. Scand. 39 (1976), no. 1, 19–55.

Deligne, *Le déterminant de la cohomologie*, Contemp. Math. 67 (1987), 93–177.

ヘロン 人間 とくほ とくほ とう

Categorification of determinants

 $n \times n$ matrix $M \iff f: k^n \to k^n$ homomorphism

If $k = \mathbb{R}$, $|\det(M)|$ is the scale factor for *f*.

Let $\omega = e_1 \wedge \cdots \wedge e_n \in \wedge^n k^n$ be the volume form,

通 とくほ とくほ とう

ъ

 $n \times n$ matrix $M \iff f: k^n \to k^n$ homomorphism

If $k = \mathbb{R}$, $|\det(M)|$ is the scale factor for *f*.

Let $\omega = e_1 \wedge \cdots \wedge e_n \in \wedge^n k^n$ be the volume form,

伺き くほき くほう しほ

 $n \times n$ matrix $M \iff f: k^n \to k^n$ homomorphism

If $k = \mathbb{R}$, $|\det(M)|$ is the scale factor for *f*.

Let $\omega = e_1 \wedge \cdots \wedge e_n \in \wedge^n k^n$ be the volume form,

$$\begin{array}{rcl} \wedge^n f \colon \wedge^n k^n & \longrightarrow & \wedge^n k^n, \\ \omega & \mapsto & \det(M) \, \omega. \end{array}$$

A E > A E >

3

 $n \times n$ matrix $M \iff f: k^n \to k^n$ homomorphism

If $k = \mathbb{R}$, $|\det(M)|$ is the scale factor for *f*.

Let $\omega = e_1 \wedge \cdots \wedge e_n \in \wedge^n k^n$ be the volume form,

$$\wedge^n f \colon \wedge^n k^n \longrightarrow \wedge^n k^n, \\ \omega \longmapsto \det(M) \omega.$$

A E > A E >

3

 $\begin{array}{lll} \det(A) &= (\wedge^{\dim A} A, \dim A), \\ \det(f) &= \wedge^{\dim A} f, \end{array}$

in the category $\textbf{lines}^{\mathbb{Z}}$ of graded lines:

Objects (L, n) are given by L a vector space of dim = 1 and n ∈ Z.
Morphisms (L, n) → (L', n') are isomorphisms L → L' if n = n' and Ø otherwise.

The functor

```
det: vect^{iso} \longrightarrow lines^{\mathbb{Z}}
```

categorifies determinants.

▲□ → ▲ □ → ▲ □ → ▲ □ → ● ●

in the category $lines^{\mathbb{Z}}$ of graded lines:

- Objects (L, n) are given by L a vector space of dim = 1 and $n \in \mathbb{Z}$.
- Morphisms $(L, n) \rightarrow (L', n')$ are isomorphisms $L \rightarrow L'$ if n = n' and \emptyset otherwise.

The functor

```
det: vect^{iso} \longrightarrow lines^{\mathbb{Z}}
```

categorifies determinants.

同 ト イヨ ト イヨ ト ・ ヨ ・ の へ ()

$$\begin{array}{lll} \det(A) &= (\wedge^{\dim A} A, \dim A), \\ \det(f) &= \wedge^{\dim A} f, \end{array}$$

in the category $lines^{\mathbb{Z}}$ of graded lines:

- Objects (L, n) are given by L a vector space of dim = 1 and n ∈ Z.
- Morphisms $(L, n) \rightarrow (L', n')$ are isomorphisms $L \rightarrow L'$ if n = n' and \emptyset otherwise.

The functor

```
det: vect^{iso} \longrightarrow lines^{\mathbb{Z}}
```

categorifies determinants.

御 医米 医医米 医医生性

$$\begin{array}{lll} \det(A) &= (\wedge^{\dim A} A, \dim A), \\ \det(f) &= \wedge^{\dim A} f, \end{array}$$

in the category $lines^{\mathbb{Z}}$ of graded lines:

- Objects (L, n) are given by L a vector space of dim = 1 and n ∈ Z.
- Morphisms $(L, n) \rightarrow (L', n')$ are isomorphisms $L \rightarrow L'$ if n = n' and \emptyset otherwise.

The functor

det: vect^{iso}
$$\longrightarrow$$
 lines ^{\mathbb{Z}}

categorifies determinants.

★ E ► ★ E ►

The functor det satisfies further properties.

The category $\textbf{lines}^{\mathbb{Z}}$ is a Picard groupoid, i.e. a symmetric categorical group, with tensor product

$$(L,n)\otimes (L',n') = (L\otimes L',n+n'),$$

and commutativity constraint twisted by a sign

$$\begin{array}{ccc} (L,n)\otimes (L',n') & \stackrel{\text{comm.}}{\longrightarrow} & (L',n')\otimes (L,n), \\ v\otimes w & \mapsto & (-1)^{nn'}w\otimes v. \end{array}$$

> < 臣 > < 臣 >

Categorification of determinants

Given a s. e. s.

$$\Delta = A \xrightarrow{i} B \xrightarrow{p} B/A$$

we have an additivity isomorphism

$\det(\Delta): \ \det(B/A) \otimes \det(A) \longrightarrow \det(B)$

defined as follows. Choose bases $\{v_1, \ldots, v_p\}$ of B/A and $\{w_1, \ldots, w_q\}$ of A, and set

 $(v_1 \wedge \cdots \wedge v_p) \otimes (w_1 \wedge \cdots \wedge w_q) \stackrel{\det(\Delta)}{\mapsto} v'_1 \wedge \cdots \wedge v'_p \wedge i(w_1) \wedge \cdots \wedge i(w_q),$ where $p(v'_r) = v_r$.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Categorification of determinants

Given a s. e. s.

$$\Delta = A \xrightarrow{i} B \xrightarrow{p} B/A$$

we have an additivity isomorphism

$$\det(\Delta): \det(B/A) \otimes \det(A) \longrightarrow \det(B)$$

defined as follows. Choose bases $\{v_1, \ldots, v_p\}$ of B/A and $\{w_1, \ldots, w_q\}$ of A, and set

 $(v_1 \wedge \cdots \wedge v_p) \otimes (w_1 \wedge \cdots \wedge w_q) \stackrel{\det(\Delta)}{\mapsto} v'_1 \wedge \cdots \wedge v'_p \wedge i(w_1) \wedge \cdots \wedge i(w_q),$ where $p(v'_r) = v_r$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Additivity isomorphisms are natural with respect to s. e. s. isomorphisms,

▲■▶ ▲国▶ ▲国▶ - 国 - のへの

Categorification of determinants

They are associative, i.e. for each 2-step filtration $A \rightarrow B \rightarrow C$ the following diagram commutes

They are commutative, i.e. the following diagram commutes

★ 문 ► ★ 문 ►

What's special about det above?

- **lines**^{\mathbb{Z}} is a Picard groupoid,
- vect has short exact sequences.

Definition (Deligne'87)

Let **E** be an abelian or exact category and **P** a Picard groupoid. A determinant is a functor

det:
$$\mathbf{E}^{iso} \longrightarrow \mathbf{P}$$

together with an additivity isomorphism

 $det(\Delta): det(B/A) \otimes det(A) \longrightarrow det(B)$

What's special about det above?

- **lines** $^{\mathbb{Z}}$ is a Picard groupoid,
- vect has short exact sequences.

Definition (Deligne'87)

Let **E** be an abelian or exact category and **P** a Picard groupoid. A determinant is a functor

det:
$$\mathbf{E}^{iso} \longrightarrow \mathbf{P}$$

together with an additivity isomorphism

 $det(\Delta): det(B/A) \otimes det(A) \longrightarrow det(B)$

What's special about det above?

- **lines**^{\mathbb{Z}} is a Picard groupoid,
- vect has short exact sequences.

Definition (Deligne'87)

Let **E** be an abelian or exact category and **P** a Picard groupoid. A determinant is a functor

det:
$$\mathbf{E}^{iso} \longrightarrow \mathbf{P}$$

together with an additivity isomorphism

 $det(\Delta): det(B/A) \otimes det(A) \longrightarrow det(B)$

What's special about det above?

- **lines**^{\mathbb{Z}} is a Picard groupoid,
- vect has short exact sequences.

Definition (Deligne'87)

Let **E** be an abelian or exact category and **P** a Picard groupoid. A determinant is a functor

det:
$$\mathbf{E}^{iso} \longrightarrow \mathbf{P}$$

together with an additivity isomorphism

 $\det(\Delta): \ \det(B/A) \otimes \det(A) \longrightarrow \det(B)$

- **E** = **vect**(*X*) the exact category of vector bundles over *X*,
- P = Pic(X) the category of graded line bundles (L, n), with L a line bundle over X and n: X → Z a locally constant map.

One can define a determinant functor of vect(X) with values on Pic(X) as above, by using exterior powers.

In the special case X = Spec(R), $\mathbf{E} = \mathbf{proj}(R)$ and $\mathbf{P} = \mathbf{Pic}(R)$ is the Picard groupoid of graded projective R-modules of constant rank 1.

What if R is noncommutative? Do we have any canonical **P** in this case?

・ 回 ト ・ ヨ ト ・ ヨ ト

- **E** = **vect**(*X*) the exact category of vector bundles over *X*,
- P = Pic(X) the category of graded line bundles (L, n), with L a line bundle over X and n: X → Z a locally constant map.

One can define a determinant functor of vect(X) with values on Pic(X) as above, by using exterior powers.

In the special case X = Spec(R), $\mathbf{E} = \mathbf{proj}(R)$ and $\mathbf{P} = \mathbf{Pic}(R)$ is the Picard groupoid of graded projective *R*-modules of constant rank 1.

What if R is noncommutative? Do we have any canonical **P** in this case?

・ 回 ト ・ ヨ ト ・ ヨ ト

- **E** = **vect**(*X*) the exact category of vector bundles over *X*,
- P = Pic(X) the category of graded line bundles (L, n), with L a line bundle over X and n: X → Z a locally constant map.

One can define a determinant functor of vect(X) with values on Pic(X) as above, by using exterior powers.

In the special case X = Spec(R), $\mathbf{E} = \text{proj}(R)$ and $\mathbf{P} = \text{Pic}(R)$ is the Picard groupoid of graded projective *R*-modules of constant rank 1.

What if R is noncommutative? Do we have any canonical **P** in this case?

ヘロト ヘアト ヘビト ヘビト

- **E** = **vect**(*X*) the exact category of vector bundles over *X*,
- P = Pic(X) the category of graded line bundles (L, n), with L a line bundle over X and n: X → Z a locally constant map.

One can define a determinant functor of vect(X) with values on Pic(X) as above, by using exterior powers.

In the special case X = Spec(R), $\mathbf{E} = \text{proj}(R)$ and $\mathbf{P} = \text{Pic}(R)$ is the Picard groupoid of graded projective *R*-modules of constant rank 1.

What if R is noncommutative? Do we have any canonical **P** in this case?

ヘロン 人間 とくほ とくほ とう

Definition

A natural isomorphism between determinant functors is a natural isomorphism

$$\tau : \det \Rightarrow \det' : \mathbf{E}^{\mathsf{iso}} \longrightarrow \mathbf{P},$$

such that for any s. e. s. $\Delta = A \rightarrow B \rightarrow B/A$ the following diagram commutes

Determinant functors and natural iso. form a groupoid det(E, P).

ヘロト 人間 ト ヘヨト ヘヨト

```
Theorem (Deligne'87)

The 2-functor

det(\mathbf{E}, -): \mathbf{PicGrd} \longrightarrow \mathbf{Grd}

is representable.
```

A representing Picard groupoid $V(\mathbf{E})$ is called a category of virtual objects.

Example

 $V(\text{proj}(R)) \simeq \text{Pic}(R)$ if the commutative ring R is local, semisimple, or the ring of integers in a number field.

・ロト ・聞 ト ・ヨト ・ヨト

```
Theorem (Deligne'87)

The 2-functor

det(\mathbf{E}, -): \mathbf{PicGrd} \longrightarrow \mathbf{Grd}

is representable.
```

A representing Picard groupoid $V(\mathbf{E})$ is called a category of virtual objects.

Example

 $V(\text{proj}(R)) \simeq \text{Pic}(R)$ if the commutative ring R is local, semisimple, or the ring of integers in a number field.

ヘロト ヘアト ヘビト ヘビト

The category of virtual objects comes equipped with a universal determinant functor

det:
$$\mathbf{E}^{\mathsf{iso}} \longrightarrow V(\mathbf{E})$$

such that any other determinant functor det': $\mathbf{E} \rightarrow \mathbf{P}$ factorises as

The category of virtual objects comes equipped with a universal determinant functor

det:
$$\mathbf{E}^{\mathsf{iso}} \longrightarrow V(\mathbf{E})$$

such that any other determinant functor det': $\mathbf{E} \rightarrow \mathbf{P}$ factorises as

The category of virtual objects comes equipped with a universal determinant functor

det:
$$\mathbf{E}^{\mathsf{iso}} \longrightarrow V(\mathbf{E})$$

such that any other determinant functor det': $\mathbf{E} \rightarrow \mathbf{P}$ factorises as

The homotopy groups of a Picard groupoid P are

- $\pi_0 \mathbf{P}$ = isomorphism classes of objects, the sum is induced by \otimes ,
- $\pi_1 \mathbf{P} = \operatorname{Aut}_{\mathbf{P}}(I)$, the automorphisms of the unit object.

The Postnikov invariant of P is the homomorphism

$$\pi_0 \mathbf{P} \xrightarrow{\eta} \pi_1 \mathbf{P},$$

such that

 $\eta(x) \otimes x \otimes x = \text{comm.: } x \otimes x \longrightarrow x \otimes x.$

Example

 $\pi_0 \operatorname{Pic}(X) \cong H^0(X, \mathbb{Z}) \oplus H^1(X, \mathcal{O}_X^{\times}) \text{ and } \pi_1 \operatorname{Pic}(X) \cong \mathcal{O}_X^{\times}(X)$

副 と く ヨ と く ヨ と

3

The homotopy groups of a Picard groupoid P are

- $\pi_0 \mathbf{P}$ = isomorphism classes of objects, the sum is induced by \otimes ,
- $\pi_1 \mathbf{P} = \operatorname{Aut}_{\mathbf{P}}(I)$, the automorphisms of the unit object.

The Postnikov invariant of P is the homomorphism

$$\pi_0 \mathbf{P} \xrightarrow{\eta} \pi_1 \mathbf{P},$$

such that

 $\eta(\mathbf{x}) \otimes \mathbf{x} \otimes \mathbf{x} = \text{comm.: } \mathbf{x} \otimes \mathbf{x} \longrightarrow \mathbf{x} \otimes \mathbf{x}.$

Example

 $\pi_0 \operatorname{Pic}(X) \cong H^0(X, \mathbb{Z}) \oplus H^1(X, \mathcal{O}_X^{\times}) \text{ and } \pi_1 \operatorname{Pic}(X) \cong \mathcal{O}_X^{\times}(X)$

「「「」 (日) (日) (日)

The homotopy groups of a Picard groupoid P are

- $\pi_0 \mathbf{P}$ = isomorphism classes of objects, the sum is induced by \otimes ,
- $\pi_1 \mathbf{P} = \operatorname{Aut}_{\mathbf{P}}(I)$, the automorphisms of the unit object.

The Postnikov invariant of P is the homomorphism

$$\pi_0 \mathbf{P} \xrightarrow{\eta} \pi_1 \mathbf{P},$$

such that

$$\eta(\mathbf{x}) \otimes \mathbf{x} \otimes \mathbf{x} = \text{comm.: } \mathbf{x} \otimes \mathbf{x} \longrightarrow \mathbf{x} \otimes \mathbf{x}.$$

Example

 $\pi_0 \operatorname{Pic}(X) \cong H^0(X, \mathbb{Z}) \oplus H^1(X, \mathcal{O}_X^{\times}) \text{ and } \pi_1 \operatorname{Pic}(X) \cong \mathcal{O}_X^{\times}(X).$

E ► < E ►</p>

э

Theorem (Deligne'87)

There are natural isomorphisms

$$\begin{aligned} \pi_0 \, V(\mathbf{E}) &\cong \quad \mathcal{K}_0(\mathbf{E}), \\ \pi_1 \, V(\mathbf{E}) &\cong \quad \mathcal{K}_1(\mathbf{E}), \end{aligned}$$

such that the Postnikov invariant of $V(\mathbf{E})$ corresponds to the action of the stable Hopf map $0 \neq \eta \in \pi_1(S) \cong \mathbb{Z}/2$ on Quillen's K-theory.

Actually Segal's classifying spectrum $B(V(\mathbf{E}))$ is naturally isomorphic to the 1-type of Quillen's *K*-theory spectrum $K(\mathbf{E})$ in the stable homotopy category.

★週 ▶ ★ 臣 ▶ ★ 臣 ▶
Theorem (Deligne'87)

There are natural isomorphisms

 $\begin{array}{rcl} \pi_0 \, V({\sf E}) &\cong & {\cal K}_0({\sf E}), \\ \pi_1 \, V({\sf E}) &\cong & {\cal K}_1({\sf E}), \end{array}$

such that the Postnikov invariant of $V(\mathbf{E})$ corresponds to the action of the stable Hopf map $0 \neq \eta \in \pi_1(S) \cong \mathbb{Z}/2$ on Quillen's K-theory.

Actually Segal's classifying spectrum $B(V(\mathbf{E}))$ is naturally isomorphic to the 1-type of Quillen's *K*-theory spectrum $K(\mathbf{E})$ in the stable homotopy category.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Knudsen–Mumford'76 tackled the problem of defining the determinant of a bounded complex A^* in $\mathbf{E} = \mathbf{vect}(X)$,

$$\cdots \rightarrow A^{n-1} \stackrel{d}{\longrightarrow} A^n \stackrel{d}{\longrightarrow} A^{n+1} \rightarrow \cdots,$$

$$\det(A^*) = \bigotimes_{n \in \mathbb{Z}} \det(A^n)^{(-1)^n}.$$

However given a quasi-isomorphim $f: A^* \xrightarrow{\sim} B^*$ it is not obvious to produce an isomorphism $det(f): det(A^*) \rightarrow det(B^*)$, etc...

Given an exact category **E**, the category of bounded complexes $C^{b}(\mathbf{E})$ is a Waldhausen category:

- a weak equivalence is a quasi-isomorphism $f: A^* \xrightarrow{\sim} B^*$,
- a cofibration is a levelwise admissible monomorphism $f: A^* \rightarrow B^*$,
- a cofiber sequence is a levelwise s. e. s. $A^* \rightarrow B^* \rightarrow B^*/A^*$.

Exact categories are also examples of Waldhausen categories, the weak equivalences are the isomorphisms and the cofibrations are the admissible monomorphisms.

(個) (日) (日) 日

Given an exact category **E**, the category of bounded complexes $C^{b}(\mathbf{E})$ is a Waldhausen category:

- a weak equivalence is a quasi-isomorphism $f: A^* \xrightarrow{\sim} B^*$,
- a cofibration is a levelwise admissible monomorphism $f: A^* \rightarrow B^*$,
- a cofiber sequence is a levelwise s. e. s. $A^* \rightarrow B^* \rightarrow B^*/A^*$.

Exact categories are also examples of Waldhausen categories, the weak equivalences are the isomorphisms and the cofibrations are the admissible monomorphisms.

(個) (日) (日) (日)

Definition (Knudsen'02, M–Tonks–Witte'08)

Let W be a Waldhausen category and P a Picard groupoid. A determinant is a functor

det: $W^{we} \longrightarrow P$

together with an additivity isomorphism

 $\det(\Delta): \ \det(B/A) \otimes \det(A) \longrightarrow \det(B)$

for each cofiber sequence $\Delta = A \rightarrow B \rightarrow B/A$ in **W** satisfying naturality with respect to weak equivalences of cofiber sequences, associativity and commutativity.

One can similarly define natural isomorphisms between these determinant functors in order to obtain a groupoid det(W, P).

Definition (Knudsen'02, M–Tonks–Witte'08)

Let W be a Waldhausen category and P a Picard groupoid. A determinant is a functor

det: $W^{we} \longrightarrow P$

together with an additivity isomorphism

 $det(\Delta): det(B/A) \otimes det(A) \longrightarrow det(B)$

for each cofiber sequence $\Delta = A \rightarrow B \rightarrow B/A$ in **W** satisfying naturality with respect to weak equivalences of cofiber sequences, associativity and commutativity.

One can similarly define natural isomorphisms between these determinant functors in order to obtain a groupoid det(W, P).

Theorem (M–Tonks–Witte'08)

The 2-functor

$det(\boldsymbol{W},-)\colon \boldsymbol{\text{PicGrd}} \longrightarrow \boldsymbol{\text{Grd}}$

is representable.

Let $V(\mathbf{W})$ be a representative.

Theorem (M–Tonks'07)

There are natural isomorphisms

 $\pi_0 V(\mathbf{W}) \cong K_0(\mathbf{W}),$ $\pi_1 V(\mathbf{W}) \cong K_1(\mathbf{W}),$

such that the Postnikov invariant of V(**W**) corresponds to the action of the stable Hopf map $0 \neq \eta \in \pi_1(S) \cong \mathbb{Z}/2$ on Waldhausen's K-theory.

ヘロン 人間 とくほ とくほ とう

3

Theorem (M-Tonks-Witte'08)

The 2-functor

$$det(\boldsymbol{W},-)\colon \boldsymbol{\text{PicGrd}} \longrightarrow \boldsymbol{\text{Grd}}$$

is representable.

Let $V(\mathbf{W})$ be a representative.

Theorem (M–Tonks'07)

There are natural isomorphisms

$$\begin{aligned} \pi_0 \, V(\mathbf{W}) &\cong & \mathcal{K}_0(\mathbf{W}), \\ \pi_1 \, V(\mathbf{W}) &\cong & \mathcal{K}_1(\mathbf{W}), \end{aligned}$$

such that the Postnikov invariant of $V(\mathbf{W})$ corresponds to the action of the stable Hopf map $0 \neq \eta \in \pi_1(S) \cong \mathbb{Z}/2$ on Waldhausen's K-theory.

ъ

ヘロト ヘアト ヘビト ヘビト

Actually Segal's classifying spectrum $B(V(\mathbf{W}))$ is naturally isomorphic to the 1-type of Waldhausen's *K*-theory spectrum $K(\mathbf{W})$ in the stable homotopy category.

Corollary (Knudsen–Mumford'76, Knudsen'02) The inclusion $\mathbf{E} \subset C^{b}(\mathbf{E})$ induces a natural equivalence $\det(C^{b}(\mathbf{E}), \mathbf{P}) \xrightarrow{\sim} \det(\mathbf{E}, \mathbf{P}).$

It follows from the Gillet–Waldhausen theorem which asserts that the inclusion induces an isomorphism $K_*(\mathbf{E}) \cong K_*(C^b(\mathbf{E}))$.

▲圖 > ▲ ヨ > ▲ ヨ > …

Actually Segal's classifying spectrum $B(V(\mathbf{W}))$ is naturally isomorphic to the 1-type of Waldhausen's *K*-theory spectrum $K(\mathbf{W})$ in the stable homotopy category.

Corollary (Knudsen–Mumford'76, Knudsen'02) The inclusion $\mathbf{E} \subset C^b(\mathbf{E})$ induces a natural equivalence $\det(C^b(\mathbf{E}), \mathbf{P}) \xrightarrow{\sim} \det(\mathbf{E}, \mathbf{P}).$

It follows from the Gillet–Waldhausen theorem which asserts that the inclusion induces an isomorphism $K_*(\mathbf{E}) \cong K_*(C^b(\mathbf{E}))$.

・ロン ・厚 と ・ ヨ と ・ ヨ と …

The bounded derived category $D^b(\mathbf{E})$ is obtained from $C^b(\mathbf{E})$ by inverting quasi-isomorphisms, therefore a determinant functor det: $C^b(\mathbf{E})^{we} \rightarrow \mathbf{P}$ induces a functor

det:
$$D^b(\mathbf{E})^{iso} \longrightarrow \mathbf{P}$$
.

What about additivity isomorphisms in terms of $D^{b}(\mathbf{E})$?

The category $D^{b}(\mathbf{E})$ is triangulated, it is equipped with exact triangles,

$$A^* \rightarrow B^* \rightarrow C^* \rightarrow A^*[1],$$

satisfying some well-known axioms.

御 とくほ とくほ とうほ

The bounded derived category $D^b(\mathbf{E})$ is obtained from $C^b(\mathbf{E})$ by inverting quasi-isomorphisms, therefore a determinant functor det: $C^b(\mathbf{E})^{we} \rightarrow \mathbf{P}$ induces a functor

det:
$$D^b(\mathbf{E})^{iso} \longrightarrow \mathbf{P}$$
.

What about additivity isomorphisms in terms of $D^{b}(\mathbf{E})$?

The category $D^{b}(\mathbf{E})$ is triangulated, it is equipped with exact triangles,

$$A^* \rightarrow B^* \rightarrow C^* \rightarrow A^*[1],$$

satisfying some well-known axioms.

御下 不是下 不是下 一度

The bounded derived category $D^b(\mathbf{E})$ is obtained from $C^b(\mathbf{E})$ by inverting quasi-isomorphisms, therefore a determinant functor det: $C^b(\mathbf{E})^{we} \rightarrow \mathbf{P}$ induces a functor

det:
$$D^b(\mathbf{E})^{iso} \longrightarrow \mathbf{P}$$
.

What about additivity isomorphisms in terms of $D^{b}(\mathbf{E})$?

The category $D^{b}(\mathbf{E})$ is triangulated, it is equipped with exact triangles,

$$A^* \rightarrow B^* \rightarrow C^* \rightarrow A^*[1],$$

satisfying some well-known axioms.

白マ イビマ イビン 一切

Definition (Breuning'06)

Let \mathbf{T} be a triangulated category and \mathbf{P} a Picard groupoid. A determinant is a functor

det: $\mathbf{T}^{iso} \longrightarrow \mathbf{P}$

together with an additivity isomorphism

 $\det(\Delta)\colon \det(C)\otimes \det(A) \longrightarrow \det(B)$

for each exact triangle $\Delta = A \rightarrow B \rightarrow C \rightarrow A[1]$ in **T** satisfying naturality with respect to triangle isomorphisms, associativity with respect to octahedral diagrams, and commutativity.

One can similarly define natural isomorphisms between these determinant functors in order to obtain a groupoid det(T, P).

Definition (Breuning'06)

Let \mathbf{T} be a triangulated category and \mathbf{P} a Picard groupoid. A determinant is a functor

det: $\mathbf{T}^{iso} \longrightarrow \mathbf{P}$

together with an additivity isomorphism

$$\det(\Delta)\colon \det(C)\otimes \det(A) \longrightarrow \det(B)$$

for each exact triangle $\Delta = A \rightarrow B \rightarrow C \rightarrow A[1]$ in **T** satisfying naturality with respect to triangle isomorphisms, associativity with respect to octahedral diagrams, and commutativity.

One can similarly define natural isomorphisms between these determinant functors in order to obtain a groupoid det(T, P).

Theorem (Breuning'06)

The 2-functor

$\text{det}(\textbf{T},-)\colon \textbf{PicGrd} \longrightarrow \textbf{Grd}$

is representable.

Let $V(\mathbf{T})$ be a representative.

Theorem (M–Tonks–Witte'08)

There are natural isomorphisms with Neeman's K-theory,

 $\begin{aligned} \pi_0 \, V(\mathbf{T}) &\cong \quad K_0(\mathbf{T}), \\ \pi_1 \, V(\mathbf{T}) &\cong \quad K_1(\mathbf{T}), \end{aligned}$

such that the Postnikov invariant of $V(\mathbb{T})$ corresponds to the action of the stable Hopf map $0 \neq \eta \in \pi_1(S) \cong \mathbb{Z}/2$ on Neeman's K-theory.

イロン 不良 とくほう 不良 とうほ

Theorem (Breuning'06)

The 2-functor

$$det(\mathbf{T}, -)$$
: **PicGrd** \longrightarrow **Grd**

is representable.

Let $V(\mathbf{T})$ be a representative.

Theorem (M-Tonks-Witte'08)

There are natural isomorphisms with Neeman's K-theory,

 $\begin{aligned} \pi_0 \, V(\mathbf{T}) &\cong & \mathcal{K}_0(\mathbf{T}), \\ \pi_1 \, V(\mathbf{T}) &\cong & \mathcal{K}_1(\mathbf{T}), \end{aligned}$

such that the Postnikov invariant of V(**T**) corresponds to the action of the stable Hopf map $0 \neq \eta \in \pi_1(S) \cong \mathbb{Z}/2$ on Neeman's K-theory.

<ロ> (四) (四) (三) (三) (三)

Corollary (Breuning'06)

Let **A** be an abelian category. The inclusion $\mathbf{A} \subset D^b(\mathbf{A})$ induces a natural equivalence

 $\det(D^b(\mathbf{A}),\mathbf{P}) \xrightarrow{\sim} \det(\mathbf{A},\mathbf{P}).$

It follows from Neeman's heart theorem which asserts that the inclusion induces an isomorphism $K_*(\mathbf{A}) \cong K_*(D^b(\mathbf{A}))$. Actually we can replace $D^b(\mathbf{A})$ by any triangulated category **T** with a non-degenerate bounded *t*-structure with heart **A**.

▲御 ▶ ▲ 臣 ▶ ▲ 臣

Corollary (Breuning'06)

Let **A** be an abelian category. The inclusion $\mathbf{A} \subset D^b(\mathbf{A})$ induces a natural equivalence

 $\det(D^b(\mathbf{A}),\mathbf{P}) \xrightarrow{\sim} \det(\mathbf{A},\mathbf{P}).$

It follows from Neeman's heart theorem which asserts that the inclusion induces an isomorphism $K_*(\mathbf{A}) \cong K_*(D^b(\mathbf{A}))$. Actually we can replace $D^b(\mathbf{A})$ by any triangulated category **T** with a non-degenerate bounded *t*-structure with heart **A**.

・ロン ・聞 と ・ ヨ と ・ ヨ と

Corollary (Breuning'06)

Let **A** be an abelian category. The inclusion $\mathbf{A} \subset D^b(\mathbf{A})$ induces a natural equivalence

 $\det(D^b(\mathbf{A}),\mathbf{P}) \xrightarrow{\sim} \det(\mathbf{A},\mathbf{P}).$

It follows from Neeman's heart theorem which asserts that the inclusion induces an isomorphism $K_*(\mathbf{A}) \cong K_*(D^b(\mathbf{A}))$. Actually we can replace $D^b(\mathbf{A})$ by any triangulated category **T** with a non-degenerate bounded *t*-structure with heart **A**.

ヘロン 人間 とくほ とくほ とう

This corollary is not true for arbitrary exact categories.

Let $\mathbf{E} = \mathbf{proj}(k[\varepsilon]/(\varepsilon^2))$ be the category of f. g. free modules over the ring of dual numbers. For this exact category,

$$k \hookrightarrow K_1(\mathbf{E}) \stackrel{\text{incl.}}{\twoheadrightarrow} K_1(D^b(\mathbf{E})) \cong k^{\times},$$

the kernel is generated by $det(1 + \varepsilon)$.

Schlichting showed that there is no possible *K*-theory for triangulated categories satisfying the usual theorems and agreeing with Waldhausen's. This example explicitly shows that Neeman's *K*-theory of triangulated categories does not satisfy agreement.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

This corollary is not true for arbitrary exact categories.

Let $\mathbf{E} = \mathbf{proj}(k[\varepsilon]/(\varepsilon^2))$ be the category of f. g. free modules over the ring of dual numbers. For this exact category,

$$k \hookrightarrow K_1(\mathbf{E}) \stackrel{\text{incl.}}{\twoheadrightarrow} K_1(D^b(\mathbf{E})) \cong k^{\times},$$

the kernel is generated by $det(1 + \varepsilon)$.

Schlichting showed that there is no possible *K*-theory for triangulated categories satisfying the usual theorems and agreeing with Waldhausen's. This example explicitly shows that Neeman's *K*-theory of triangulated categories does not satisfy agreement.

(日本) (日本) (日本) 日

This corollary is not true for arbitrary exact categories.

Let $\mathbf{E} = \mathbf{proj}(k[\varepsilon]/(\varepsilon^2))$ be the category of f. g. free modules over the ring of dual numbers. For this exact category,

$$k \hookrightarrow {\mathcal K}_1({\mathsf E}) \stackrel{{\rm incl.}}{\twoheadrightarrow} {\mathcal K}_1(D^b({\mathsf E})) \cong k^{ imes},$$

the kernel is generated by $det(1 + \varepsilon)$.

Schlichting showed that there is no possible *K*-theory for triangulated categories satisfying the usual theorems and agreeing with Waldhausen's. This example explicitly shows that Neeman's *K*-theory of triangulated categories does not satisfy agreement.

(個) (日) (日) (日)

This corollary is not true for arbitrary exact categories.

Let $\mathbf{E} = \mathbf{proj}(k[\varepsilon]/(\varepsilon^2))$ be the category of f. g. free modules over the ring of dual numbers. For this exact category,

$$k \hookrightarrow \mathcal{K}_1(\mathsf{E}) \stackrel{\mathsf{incl.}}{\twoheadrightarrow} \mathcal{K}_1(D^b(\mathsf{E})) \cong k^{ imes},$$

the kernel is generated by $det(1 + \varepsilon)$.

Schlichting showed that there is no possible *K*-theory for triangulated categories satisfying the usual theorems and agreeing with Waldhausen's. This example explicitly shows that Neeman's *K*-theory of triangulated categories does not satisfy agreement.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

There is an intermediate approach interpolating between $C^{b}(\mathbf{E})$ and $D^{b}(\mathbf{E})$.

More generally, this approach interpolates between **W** and its homotopy category Ho(**W**), obtained by inverting weak equivalences. It uses the Waldhausen category S_2 **W** of cofiber sequences in **W** and its homotopy category Ho(S_2 **W**).

(日本) (日本) (日本) 日

There is an intermediate approach interpolating between $C^{b}(\mathbf{E})$ and $D^{b}(\mathbf{E})$.

More generally, this approach interpolates between **W** and its homotopy category Ho(**W**), obtained by inverting weak equivalences. It uses the Waldhausen category S_2 **W** of cofiber sequences in **W** and its homotopy category Ho(S_2 **W**).

・ 何 と く き と く き と … き

There is an intermediate approach interpolating between $C^{b}(\mathbf{E})$ and $D^{b}(\mathbf{E})$.

More generally, this approach interpolates between **W** and its homotopy category Ho(**W**), obtained by inverting weak equivalences. It uses the Waldhausen category S_2 **W** of cofiber sequences in **W** and its homotopy category Ho(S_2 **W**).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

There is an intermediate approach interpolating between $C^{b}(\mathbf{E})$ and $D^{b}(\mathbf{E})$.

More generally, this approach interpolates between **W** and its homotopy category Ho(**W**), obtained by inverting weak equivalences. It uses the Waldhausen category S_2 **W** of cofiber sequences in **W** and its homotopy category Ho(S_2 **W**).

< 回 > < 回 > < 回 > … 回

Definition (M-Tonks-Witte'08)

Let **W** be a Waldhausen category and **P** a Picard groupoid. A derived determinant is a functor

det: $Ho(W)^{iso} \longrightarrow P$

together with an additivity isomorphism

 $det(\Delta)$: $det(B/A) \otimes det(A) \longrightarrow det(B)$

for each cofiber sequence $\Delta = A \rightarrow B \rightarrow B/A$ in **W** satisfying naturality with respect to isomorphisms in Ho(S_2 **W**), associativity and commutativity.

One can similarly define natural isomorphisms between these determinant functors in order to obtain a groupoid det^{der}(W, P).

Definition (M-Tonks-Witte'08)

Let **W** be a Waldhausen category and **P** a Picard groupoid. A derived determinant is a functor

det: $Ho(W)^{iso} \longrightarrow P$

together with an additivity isomorphism

 $\det(\Delta): \ \det(B/A) \otimes \det(A) \longrightarrow \det(B)$

for each cofiber sequence $\Delta = A \rightarrow B \rightarrow B/A$ in **W** satisfying naturality with respect to isomorphisms in Ho(S_2 **W**), associativity and commutativity.

One can similarly define natural isomorphisms between these determinant functors in order to obtain a groupoid $det^{der}(W, P)$.

Determinants for derivators

A Grothendieck derivator is a 2-functor

$$\mathbb{D}$$
: Cat^{op} \longrightarrow Cat,

satisfying some properties modelled on the features of the canonical example,

$$\mathbb{D}(\mathbf{W}) : \mathbf{Cat}^{\mathsf{op}} \longrightarrow \mathbf{Cat}, \ J \mapsto \mathsf{Ho}(\mathbf{W}^J),$$

where ${\bf W}$ is a Waldhausen category with cylinders and a saturated class of weak equivalences.

There is a notion of determinant functor for derivators such that $det(\mathbb{D}(W), P) \simeq det^{der}(W, P)$.

Maltsiniotis'07 and Garkusha'05 defined a *K*-theory for derivators. Maltsiniotis conjectured agreement with Waldhausen *K*-theory.

A Grothendieck derivator is a 2-functor

 \mathbb{D} : Cat^{op} \longrightarrow Cat,

satisfying some properties modelled on the features of the canonical example,

$$\mathbb{D}(\mathbf{W}) : \mathbf{Cat}^{\mathsf{op}} \longrightarrow \mathbf{Cat}, \ J \mapsto \mathsf{Ho}(\mathbf{W}^J),$$

where \mathbf{W} is a Waldhausen category with cylinders and a saturated class of weak equivalences.

There is a notion of determinant functor for derivators such that $det(\mathbb{D}(W), P) \simeq det^{der}(W, P)$.

Maltsiniotis'07 and Garkusha'05 defined a *K*-theory for derivators. Maltsiniotis conjectured agreement with Waldhausen *K*-theory.

A Grothendieck derivator is a 2-functor

$$\mathbb{D}$$
: Cat^{op} \longrightarrow Cat,

satisfying some properties modelled on the features of the canonical example,

$$\mathbb{D}(\mathbf{W}) : \mathbf{Cat}^{\mathsf{op}} \longrightarrow \mathbf{Cat}, \ J \mapsto \mathsf{Ho}(\mathbf{W}^J),$$

where \mathbf{W} is a Waldhausen category with cylinders and a saturated class of weak equivalences.

There is a notion of determinant functor for derivators such that $det(\mathbb{D}(W), P) \simeq det^{der}(W, P)$.

Maltsiniotis'07 and Garkusha'05 defined a *K*-theory for derivators. Maltsiniotis conjectured agreement with Waldhausen *K*-theory.

Derived determinants

Theorem (M-Tonks-Witte'08)

The 2-functor

$det^{der}(W,-)\colon \textbf{PicGrd} \longrightarrow \textbf{Grd}$

is representable.

Let $V^{der}(\mathbf{W})$ be a represtentative.

Theorem (M'08)

There are natural isomorphisms

 $\begin{aligned} \pi_0 V^{\mathrm{der}}(\mathbf{W}) &\cong & \mathcal{K}_0(\mathbb{D}(\mathbf{W})), \\ \pi_1 V^{\mathrm{der}}(\mathbf{W}) &\cong & \mathcal{K}_1(\mathbb{D}(\mathbf{W})), \end{aligned}$

such that the Postnikov invariant of $V^{der}(\mathbf{W})$ corresponds to the action of the stable Hopf map $0 \neq \eta \in \pi_1(S) \cong \mathbb{Z}/2$ on Maltsiniotis's K-theory.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Derived determinants

Theorem (M-Tonks-Witte'08)

The 2-functor

$$det^{der}(W,-) \colon \textbf{PicGrd} \longrightarrow \textbf{Grd}$$

is representable.

Let $V^{der}(\mathbf{W})$ be a representative.

Theorem (M'08)

There are natural isomorphisms

$$\begin{aligned} \pi_0 \, V^{\mathrm{der}}(\mathbf{W}) &\cong \quad \mathcal{K}_0(\mathbb{D}(\mathbf{W})), \\ \pi_1 \, V^{\mathrm{der}}(\mathbf{W}) &\cong \quad \mathcal{K}_1(\mathbb{D}(\mathbf{W})), \end{aligned}$$

such that the Postnikov invariant of $V^{\text{der}}(\mathbf{W})$ corresponds to the action of the stable Hopf map $0 \neq \eta \in \pi_1(S) \cong \mathbb{Z}/2$ on Maltsiniotis's K-theory.

ヘロト ヘアト ヘビト ヘビト

э

Derived determinants and Maltsiniotis's first conjecture

Using explicit very small models for the categories of virtual objects we showed.

Theorem (M'08)

There is a natural equivalence $V(\mathbf{W}) \simeq V^{der}(\mathbf{W})$.

Corollary (Maltsiniotis's first conjecture in low dimensions)

There are natural isomorphisms

 $\begin{array}{rcl} K_0(\mathbf{W}) &\cong & K_0(\mathbb{D}(\mathbf{W})), \\ K_1(\mathbf{W}) &\cong & K_1(\mathbb{D}(\mathbf{W})). \end{array}$

イロト イポト イヨト イヨト 三日
Using explicit very small models for the categories of virtual objects we showed.

Theorem (M'08)

There is a natural equivalence $V(\mathbf{W}) \simeq V^{der}(\mathbf{W})$.

Corollary (Maltsiniotis's first conjecture in low dimensions)

There are natural isomorphisms

 $\begin{array}{rcl} \mathcal{K}_0(\mathbf{W}) &\cong & \mathcal{K}_0(\mathbb{D}(\mathbf{W})), \\ \mathcal{K}_1(\mathbf{W}) &\cong & \mathcal{K}_1(\mathbb{D}(\mathbf{W})). \end{array}$

Small models for virtual objects

A stable quadratic module C_* is a diagram

$$\begin{array}{rcl} \partial \langle c_1, d_1 \rangle &=& [d_1, c_1], \\ C_0^{ab} \otimes C_0^{ab} \xrightarrow{\langle \cdot, \cdot \rangle} C_1 \xrightarrow{\partial} C_0 & \text{satisfying} & \langle \partial (c_2), \partial (d_2) \rangle &=& [d_2, c_2], \\ & \langle c_1, d_1 \rangle &=& -\langle d_1, c_1 \rangle. \end{array}$$

The loop Picard groupoid ΩC_* has object set C_0 and morphisms

 (c_0, c_1) : $c_0 + \partial(c_1) \rightarrow c_0$,

$$\begin{array}{rcl} (c_0,c_1)(c_0+\partial(c_1),c_1') &=& (c_0,c_1+c_1'),\\ & c_0\otimes c_0' &=& c_0+c_0',\\ (c_0,c_1)\otimes (c_0',c_1') &=& (c_0+c_0',c_1+c_1'+\langle c_0',\partial(c_1)\rangle),\\ & \text{comm.} &=& (c_0+c_0',\langle c_0,c_0'\rangle)\colon c_0'+c_0\to c_0+c_0'. \end{array}$$

▲□ > ▲ □ > ▲ □ > …

Small models for virtual objects

A stable quadratic module C_* is a diagram

$$\begin{array}{rcl} \partial \langle \boldsymbol{c}_1, \boldsymbol{d}_1 \rangle &=& [\boldsymbol{d}_1, \boldsymbol{c}_1], \\ \boldsymbol{C}_0^{ab} \otimes \boldsymbol{C}_0^{ab} \xrightarrow{\langle \cdot, \cdot \rangle} \boldsymbol{C}_1 \xrightarrow{\partial} \boldsymbol{C}_0 & \text{satisfying} & \langle \partial (\boldsymbol{c}_2), \partial (\boldsymbol{d}_2) \rangle &=& [\boldsymbol{d}_2, \boldsymbol{c}_2], \\ & \langle \boldsymbol{c}_1, \boldsymbol{d}_1 \rangle &=& -\langle \boldsymbol{d}_1, \boldsymbol{c}_1 \rangle. \end{array}$$

The loop Picard groupoid ΩC_* has object set C_0 and morphisms

$$(c_0, c_1)$$
: $c_0 + \partial(c_1) \rightarrow c_0$,

$$\begin{array}{rcl} (c_0,c_1)(c_0+\partial(c_1),c_1') &=& (c_0,c_1+c_1'),\\ & c_0\otimes c_0' &=& c_0+c_0',\\ (c_0,c_1)\otimes (c_0',c_1') &=& (c_0+c_0',c_1+c_1'+\langle c_0',\partial(c_1)\rangle),\\ & \text{comm.} &=& (c_0+c_0',\langle c_0,c_0'\rangle)\colon c_0'+c_0\to c_0+c_0'. \end{array}$$

Small models for virtual objects

A stable quadratic module C_* is a diagram

$$\begin{array}{rcl} \partial \langle c_1, d_1 \rangle &=& [d_1, c_1], \\ C_0^{ab} \otimes C_0^{ab} \xrightarrow{\langle \cdot, \cdot \rangle} C_1 \xrightarrow{\partial} C_0 & \text{satisfying} & \langle \partial (c_2), \partial (d_2) \rangle &=& [d_2, c_2], \\ & \langle c_1, d_1 \rangle &=& -\langle d_1, c_1 \rangle. \end{array}$$

The loop Picard groupoid ΩC_* has object set C_0 and morphisms

$$(c_0, c_1)$$
: $c_0 + \partial(c_1) \rightarrow c_0$,

The homotopy groups of the loop Picard groupoid ΩC_* are

$$\begin{aligned} \pi_0 \Omega C_* &= C_0 / \partial (C_1), \\ \pi_1 \Omega C_* &= \operatorname{Ker} \partial, \end{aligned}$$

and the Postnikov invariant is

$$\eta \colon \pi_0 \Omega C_* \longrightarrow \pi_1 \Omega C_*,$$
$$x \longmapsto \langle x, x \rangle.$$

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● � � �

• [A] for any object in W,

and in dimension one by

- $[A \rightarrow A']$ for any weak equivalence,
- $[A \rightarrow B \rightarrow B/A]$ for any cofiber sequence.

These generators correspond to bisimplices of total degree 1 and 2 in Waldhausen's *S*.-construction, which defines the *K*-theory spectrum $K(\mathbf{W})$. Bisimplices

• [A] for any object in W,

and in dimension one by

- $[A \xrightarrow{\sim} A']$ for any weak equivalence,
- $[A \rightarrow B \rightarrow B/A]$ for any cofiber sequence.

These generators correspond to bisimplices of total degree 1 and 2 in Waldhausen's *S*.-construction, which defines the *K*-theory spectrum $K(\mathbf{W})$. In bisimplices

• [A] for any object in W,

and in dimension one by

- $[A \xrightarrow{\sim} A']$ for any weak equivalence,
- $[A \rightarrow B \rightarrow B/A]$ for any cofiber sequence.

These generators correspond to bisimplices of total degree 1 and 2 in Waldhausen's *S*.-construction, which defines the *K*-theory spectrum $K(\mathbf{W})$. • Disimplices

• [A] for any object in W,

and in dimension one by

- $[A \xrightarrow{\sim} A']$ for any weak equivalence,
- $[A \rightarrow B \rightarrow B/A]$ for any cofiber sequence.

These generators correspond to bisimplices of total degree 1 and 2 in Waldhausen's *S*.-construction, which defines the *K*-theory spectrum $K(\mathbf{W})$. \bullet bisimplices

- The trivial relations formulas bisimplices.
- The boundary relations formulas bisimplices
- Composition of weak equivalences formula bisimplex).
- Weak equivalences of cofiber sequences
 Informula
 Instantian
- Composition of cofiber sequences formula bisimplex.
- Coproducts formula .

▶ skip

- The trivial relations formulas bisimplices.
- The boundary relations formulas bisimplices
- Composition of weak equivalences formula bisimplex.
- Weak equivalences of cofiber sequences
 formula
 bisimplex
- Composition of cofiber sequences formula bisimplex.
- Coproducts formula .

▶ skip

- The trivial relations formulas bisimplices.
- The boundary relations formulas bisimplices.
- Composition of weak equivalences formula bisimplex.
- Weak equivalences of cofiber sequences
 formula
 bisimplex
- Composition of cofiber sequences tormula bisimplex.
- Coproducts formula .

▶ skip

- The trivial relations formulas bisimplices.
- The boundary relations formulas bisimplices.
- Composition of weak equivalences
 formula
- Weak equivalences of cofiber sequences formula bisimplex
- Composition of cofiber sequences formula bisimplex.
- Coproducts formula .

▶ skip

通 とくほ とくほ とう

- The trivial relations formulas bisimplices.
- The boundary relations formulas bisimplices.
- Composition of weak equivalences
 formula
- Weak equivalences of cofiber sequences formula bisimplex.
- Composition of cofiber sequences formula bisimplex.
- Coproducts
 formula

▶ skip

通 とくほ とくほ とう

- The trivial relations formulas bisimplices.
- The boundary relations formulas bisimplices.
- Composition of weak equivalences
 formula
- Weak equivalences of cofiber sequences formula bisimplex.
- Composition of cofiber sequences formula bisimplex.
- Coproducts formula

- The trivial relations formulas bisimplices.
- The boundary relations formulas bisimplices.
- Composition of weak equivalences
 formula
- Weak equivalences of cofiber sequences formula bisimplex.
- Composition of cofiber sequences formula bisimplex.
- Coproducts formula.

▶ skip

通 とう ぼう うきょう

• [*] = 0.• $[A \xrightarrow{1_A} A] = 0.$ • $[A \xrightarrow{1_A} A \xrightarrow{\longrightarrow} *] = 0, [* \xrightarrow{} A \xrightarrow{1_A} A] = 0.$

This proves that the universal det preserves identities.

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● � � �

The boundary relations

•
$$\partial[A \xrightarrow{\sim} A'] = -[A'] + [A].$$

• $\partial[A \xrightarrow{\sim} B \xrightarrow{\rightarrow} B/A] = -[B] + [B/A] + [A].$

This allows to define the universal det as

$$det(A) = [A],$$

$$det(A \xrightarrow{\sim} A') = ([A'], [A \xrightarrow{\sim} A']),$$

$$det(A \xrightarrow{\rightarrow} B \xrightarrow{\rightarrow} B/A) = ([B], [A \xrightarrow{\sim} B \xrightarrow{\rightarrow} B/A]).$$

▲ back)

▶ ▲ 匣 ▶ ▲ 匣 ▶ ...

• For any pair of composable weak equivalences $A \xrightarrow{\sim} A' \xrightarrow{\sim} A''$,

$$[A \xrightarrow{\sim} A''] = [A' \xrightarrow{\sim} A''] + [A \xrightarrow{\sim} A'].$$

This proves that the universal det preserves composition.

通り くほり くほり

ъ

Weak equivalences of cofiber sequences

For any commutative diagram in W as follows

we have

$$[A' \rightarrow B' \rightarrow B'/A']$$

$$[A \rightarrow A'] + [B/A \rightarrow B'/A']$$

$$+ \langle [A], -[B'/A'] + [B/A] \rangle = [B \rightarrow B']$$

$$+ [A \rightarrow B \rightarrow B/A].$$

This proves that additivity isomorphisms are natural.

▲□ → ▲ □ → ▲ □ → ▲ □ → ● ●

Composition of cofiber sequences

• For any commutative diagram consisting of four obvious cofiber sequences in **W** as follows

we have (this implies associativity of additivity isomorphisms)

$$\begin{array}{ll} [B \rightarrowtail C \twoheadrightarrow C/B] \\ +[A \rightarrowtail B \twoheadrightarrow B/A] &= & [A \rightarrowtail C \twoheadrightarrow C/A] \\ & & +[B/A \rightarrowtail C/A \twoheadrightarrow C/B] \\ & & +\langle [A], -[C/A] + [C/B] + [B/A] \rangle. \end{array}$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

• For any pair of objects A, B in W $\langle [A], [B] \rangle = -[A \xrightarrow{i_1} A \lor B \xrightarrow{p_2} B] + [B \xrightarrow{i_2} A \lor B \xrightarrow{p_1} A].$

This implies commutativity of additivity isomorphisms.

通 とくほ とくほ とう

э.

Bisimplices of total degree 1 and 2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Degenerate bisimplices of total degree 1 and 2

▲ back

프 에 에 프 어 - -

ъ

Bisimplex of bidegree (1, 2)

back

Bisimplex of bidegree (2, 1)

✓ back

ヘロン 人間 とくほとく ほとう

Bisimplex of bidegree (3, 0)

back

ヘロン 人間 とくほとく ほとう

On determinants (as functors)

The End Thanks for your attention!

Fernando Muro On determinants (as functors)

・ 同 ト ・ ヨ ト ・ ヨ ト ・

ъ