
The triangulated Auslander–Iyama
correspondence

Gustavo Jasso (Lund) and Fernando Muro (Sevilla)
with a crucial contribution by Bernhard Keller (Paris)
Séminaire d’Algèbre, Paris (online)
https://doi.org/10.48550/arXiv.2208.14413
28 November 2022

https://doi.org/10.48550/arXiv.2208.14413


Main theorem

Theorem

Let k be a perfect field and d ≥ 1. There is a bijective
correspondence between equivalence classes of:

1. (T , c) were:
(a) T algebraic triangulated category with split idempotents

such that dim T (x, y) < ∞ for all x, y ∈ T .
(b) c ∈ T basic dZ-cluster tilting object.

2. (Λ, [σ]) where:
(a) Λ twisted (d+ 2)-periodic basic Frobenius algebra.
(b) [σ] ∈ Out(Λ) such that Ωd+2(Λ) ∼= 1Λσ in mod(Λe).

3. Differential graded algebras (DGAs) A such that:
(a) dimH0(A) < ∞.
(b) A ∈ Dc(A) is a basic dZ-cluster tilting object.
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The equivalence relations

1. (T , c) ∼ (T ′, c′) if there is a triangulated equivalence

F : T ∼−→ T ′

such that
F(c) ∼= c′.

2. (Λ, [σ]) ∼ (Λ′, [σ′]) if there is an isomorphism

f : Λ ∼−→ Λ′

such that
[σ] = [ f−1σ′ f ] ∈ Out(Λ).

3. Quasi-isomorphisms.
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The bijections

T , c Λ, [σ]

A

Λ = T (c, c)
1Λσ = T (c, c[−d])

Amiot, 2007
d = 1

T = Dc(A)
c = A

Λ = H0(A)
1Λσ = H−d(A)

Keller, 1994 ?
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Algebra

The twisted (d+ 2)-periodicity of Λ is equivalent to the
existence of an extension of Λ-bimodules with
projective-injective middle terms Pi, 1 ≤ i ≤ d+ 2,

η : 1Λσ ↪→ Pd+2 → · · · → P1 � Λ.

This represents

{η} ∈ Extd+2Λe (Λ, 1Λσ) = HHd+2(Λ, 1Λσ).

The set of all these classes are an orbit for the action of Z(Λ)×.
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Differential graded algebra

A is a DGA such that Λ = H0(A) is finite-dimensional and
A ∈ Dc(A) is basic dZ-cluster tilting. Hence, there exists a
unique [σ] ∈ Out(Λ) such that

H−d(A) ∼= 1Λσ

and hence

H−di(A) ∼= 1Λσi i ∈ Z,

Hn(A) = 0 otherwise.

Therefore

H∗(A) = Λ(σ,d) = Λ〈ı±1〉
(ıλ− σ(λ)ı)

, |ı| = −d.

This algebra is d-sparse, i.e. it is concentrated in degrees dZ.
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Minimal models

A has an essentially unique minimal (A∞-algebra) model,
consisting of operations

mdi+2 : Λ(σ,d)⊗
di+2· · · ⊗Λ(σ,d) −→ Λ(σ,d), |mdi+2| = −di, i ≥ 1,

satisfying certain equations. These operations are Hochschild
cochains

mdi+2 ∈ Cdi+2,−di(Λ(σ,d),Λ(σ,d)).

The first one (i = 1) is a cocycle whose cohomology class is
called universal Massey product (UMP) of length d+ 2,

{md+2} ∈ HHd+2,−d(Λ(σ,d),Λ(σ,d)).
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The connection

Λ ⊂ Λ(σ,d) is the degree 0 part.

1Λσ ⊂ Λ(σ,d) is the degree −d part.

The inclusion j : Λ ↪→ Λ(σ,d) induces a morphism

j∗ : HHd+2,−d(Λ(σ,d),Λ(σ,d)) −→ HHd+2(Λ, 1Λσ).

Theorem

If (Λ(σ,d),md+2, . . . ) is a minimal model for A, there exists a
twisted (d+ 2)-periodicity extension for Λ

η : 1Λσ ↪→ Pd+2 → · · · → P1 � Λ

such that

j∗({md+2}) = {η} restricted UMP (rUMP).
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The key question

To which extent is A determined by

• H∗(A) = Λ(σ,d) and
• {η} ∈ HHd+2(Λ, 1Λσ)?

A or equivalently its minimal model

(Λ(σ,d),md+2, . . . ,mdi+2, . . . ).
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The universal Massey product

Hochschild cohomology HH•,∗(Λ(σ,d),Λ(σ,d)) is a Lie algebra
and a commutative algebra (Gerstenhaber algebra).

The UMP {md+2} ∈ HHd+2,−d(Λ(σ,d),Λ(σ,d)) satisfies

[{md+2}, {md+2}]
2

= 0

by the minimal A∞-algebra equations. We assume for
simplicity that char k 6= 2.
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The restricted universal Massey product

Since Λ is Frobenius we have a Hochschild–Tate cohomology
algebra (Eu and Schedler, 2009)

HH•,∗(Λ,Λ(σ,d))

which is defined for • < 0 and coincides with HH•,∗(Λ,Λ(σ,d))
for • > 0.

The rUMP

{η} ∈ HHd+2(Λ, 1Λσ) = HHd+2,−d(Λ,Λ(σ,d))

is a unit in HH•,∗(Λ,Λ(σ,d)) since the extension middle terms
Pi are projective-injective.
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The UMP is determined by the rUMP

Theorem

If u ∈ HHd+2,−d(Λ,Λ(σ,d)) is a unit in HH•,∗(Λ,Λ(σ,d)) then
there exists a unique m ∈ HHd+2,−d(Λ(σ,d),Λ(σ,d)) such that

• j∗(m) = u,
• [m,m]

2 = 0.

In particular, if u = {η} is the rUMP then the UMP must be
{md+2} = m.
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Formality

When is a DGA determined by its cohomology?

Theorem (Kadeishvili, 1988)

Let B be a graded algebra with

HHp+2,−p(B,B) = 0, p > 0.

If A and A′ are DGAs with H∗(A) = H∗(A′) = B then A is
quasi-isomorphic to A′ via a quasi-isomorphism which is the
identity in cohomology.

In this case there is a canonical choice for A, namely B with
trivial differential.
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Beyond formality

A d-sparse Massey algebra (B,m) is a d-sparse graded algebra
B equipped with a Hochschild cohomology class

m ∈ HHd+2,−d(B,B)

such that [m,m]
2 = 0.

Example

1. (Λ(σ,d), {md+2}) and more generally
2. (H∗(A), {md+2}) where A is a DGA with d-sparse
cohomology.
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Beyond formality

The Hochschild cohomology HH•,∗(B,m) of a d-sparse Massey
algebra (B,m) is the complex with:

• cochains: HH•,∗(B,B), • ≥ 2,
• differential: x 7→ [m, x].

Theorem

Let (B,M) be a d-sparse Massey algebra with

HHp+2,−p(B,m) = 0, p > d.

If A and A′ are DGAs with d-sparse cohomology and

(H∗(A), {md+2}) = (H∗(A′), {m′
d+2}) = (B,m)

then A is quasi-isomorphic to A′ via a quasi-isomorphism
which is the identity in cohomology.
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Beyond formality

Theorem

HHp+2,q(Λ(σ,d), {md+2}) = 0, p > d, q ∈ Z.

Proof.

Multiplication by {md+2} is a chain map on the Hochschild
complex of the d-sparse Massey algebra (Λ(σ,d), {md+2}),

HH•,∗(Λ(σ,d)) −→ HH•+d+2,∗−d(Λ(σ,d)) : x 7→ {md+2} · x.

It is an isomorphism for • > d+ 2 since j∗({md+2}) is a unit in
HH•,∗(Λ,Λ(σ,d)), but it has a null-homotopy

HH•,∗(Λ(σ,d)) −→ HH•+1,∗(Λ(σ,d)) : x 7→ {δ/d} · x

where δ/d(x) =
|x|
d x is the fractional Euler class. 15



That’s all folks!

,Thanks for your attention!
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