

The triangulated Auslander-Iyama correspondence

Gustavo Jasso (Lund) and Fernando Muro (Sevilla) with a crucial contribution by Bernhard Keller (Paris) Séminaire d'Algèbre, Paris (online) https://doi.org/10.48550/arXiv.2208.14413

Triangulated categories

$$\mathcal{T}$$

Triangulated category Suspension/translation

$$\Sigma \colon \mathcal{T} \stackrel{\sim}{\longrightarrow} \mathcal{T}$$

Exact triangle

$$X \to Y \to Z \to \Sigma X$$

Exact triangle (folded)

Algebraic examples

$$\mathcal{T}=D^{c}(A)$$

$$\Sigma X = X[1]$$

Categories

k perfect ground field.

All categories will be additive and will have split idempotents.

Given $c \in \mathcal{C}$, $add(c) \subset \mathcal{C}$ is the full subcategory spanned by finite direct sums of direct summands of c.

 $c \in \mathcal{C}$ is an additive generator if $add(c) \simeq \mathcal{C}$.

 \mathcal{C} is finite if it has an additive generator c with dim $\mathcal{C}(c,c)<\infty$. We can take c basic, i.e.

$$c = c_1 \oplus \cdots \oplus c_n$$

with c_i indecomposable and $c_i \ncong c_j$ if $i \neq j$.

Algebras

 Λ finite-dimensional basic Frobenius algebra. $mod(\Lambda)$ finite-dimensional (right) Λ -modules.

 $\underline{\operatorname{mod}}(\Lambda)$ stable module category.

 $\Omega(M)$ syzygy of a Λ -module M.

 $\Lambda^e = \Lambda \otimes \Lambda^{op}$ the enveloping algebra.

Algebras

If $\sigma \colon \Lambda \xrightarrow{\sim} \Lambda$ is an algebra automorphism, the twisted bimodule ${}_1\Lambda_{\sigma}$ is Λ with the usual left action, and right action given by

$$a \cdot b = a\sigma(b)$$
.

Λ is twisted *n*-periodic if $Ω^n(Λ) ≅ {}_1Λ_σ$ in $\underline{mod}(Λ^e)$ for some n > 0 and σ ∈ Aut(Λ).

 ${}_1\Lambda_\sigma\cong{}_1\Lambda_\tau$ in $\operatorname{mod}(\Lambda^e)$ iff $[\sigma]=[\tau]\in\operatorname{Out}(\Lambda)$.

Main theorem

Theorem (Muro, 2022)

There is a bijective correspondence between equivalence classes of:

- 1. Finite algebraic triangulated categories \mathcal{T} .
- 2. $(\Lambda, [\sigma])$ where:
 - (a) ∧ twisted 3-periodic basic Frobenius algebra.
 - (b) $[\sigma] \in \text{Out}(\Lambda)$ such that $\Omega^3(\Lambda) \cong {}_1\Lambda_{\sigma}$ in $\underline{\text{mod}}(\Lambda^e)$.
- 3. Differential graded algebras (DGAs) A such that:
 - (a) dim $H^0(A) < \infty$.
 - (b) $A \in D^{c}(A)$ is a basic additive generator.

5

The equivalence relations

- 1. Triangulated equivalences.
- 2. $(\Lambda, [\sigma]) \sim (\Lambda', [\sigma'])$ if there exists an isomorphism

$$f: \Lambda \xrightarrow{\sim} \Lambda'$$

such that

$$[\sigma] = [f^{-1}\sigma_1 f] \in \text{Out}(\Lambda).$$

3. Quasi-isomorphisms.

A related theorem

Theorem (Hanihara, 2020)

There is a bijective correspondence between equivalence classes of:

- 1. Finite categories \mathcal{T} which can be endowed with a triangulated structure.
- 2. ∧ twisted 3-periodic basic Frobenius algebra.

From DGAs to triangulated categories

$$\mathcal{T} = D^{\mathcal{C}}(A)$$
.

From triangulated categories to twisted periodic algebras

 $\Lambda = \mathcal{T}(c,c)$ for c a basic additive generator, $\mathrm{add}(c) \simeq \mathcal{T}$. This algebra is Frobenius by Freyd, 1966.

Since $\Sigma \colon \mathcal{T} \xrightarrow{\sim} \mathcal{T}$ is an equivalence, $\Sigma^{-1}c \cong c$ hence the Λ -bimodule $\mathcal{T}(c, \Sigma^{-1}c)$ is twisted.

 $[\sigma] \in \mathsf{Out}(\Lambda)$ is the only class such that

$$_{1}\Lambda_{\sigma}\cong\mathcal{T}(c,\Sigma^{-1}c)$$

in $mod(\Lambda^e)$.

The twisted periodicity isomorphism $\Omega^3(\Lambda) \cong {}_1\Lambda_{\sigma}$ in $\underline{\operatorname{mod}}(\Lambda^e)$ follows from Heller, 1968.

From DGAs to twisted periodic algebras

For
$$\mathcal{T}=D^c(A)$$
 with add(A) $\simeq D^c(A)$ we have $\mathcal{T}(A,A)=H^0(A)$ so
$$\Lambda=H^0(A).$$

Moreover, we have
$$\Sigma=[1]$$
 and $\mathcal{T}(A,A[-1])=H^{-1}(A)$ so
$${}_1\Lambda_\sigma\cong H^{-1}(A).$$

From twisted periodic algebras to triangulated categories

This construction is due to Amiot, 2007.

$$\mathcal{T} = \operatorname{proj}(\Lambda)$$
.

$$\Sigma^{-1} = - \otimes_{\Lambda} {}_1 \Lambda_{\sigma} \text{ were } \Omega^3(\Lambda) \cong {}_1 \Lambda_{\sigma} \text{ in } \underline{\mathsf{mod}}(\Lambda^e).$$

The previous isomorphism amounts to the existence of an exact sequence in $mod(\Lambda^e)$ with projective middle terms,

$${}_{1}\Lambda_{\sigma}\stackrel{i}{\hookrightarrow}P_{3}\rightarrow P_{2}\rightarrow P_{1}\stackrel{p}{\twoheadrightarrow}\Lambda.$$

From twisted periodic algebras to triangulated categories

We consider the exact sequence of Λ -bimodules

We can tensor this sequence with any $M \in \text{mod}(\Lambda)$

$$\Sigma^{-1}(M \otimes_{\Lambda} P_1) = M \otimes_{\Lambda} P_1 \otimes_{\Lambda 1} \Lambda_{\sigma} \longrightarrow M \otimes_{\Lambda} P_3 \longrightarrow M \otimes_{\Lambda} P_2 \longrightarrow M \otimes_{\Lambda} P_1.$$

Exact triangles in $\ensuremath{\mathcal{T}}$ are retracts of finite direct sums of these.

Connected case

 Λ is connected if $\Lambda \not\cong \Lambda_1 \times \Lambda_2$ con $\Lambda_i \neq 0$, i = 1, 2.

Proposition

If Λ is connected twisted 3-periodic and non-separable then there exists a unique $[\sigma] \in \text{Out}(\Lambda)$ such that $\Omega^3(\Lambda) \cong {}_1\Lambda_{\sigma}$ in $\underline{\text{mod}}(\Lambda^e)$

Proof.

 $_1\Lambda_{\sigma}\cong {}_1\Lambda_{\tau}$ in $\underline{\operatorname{mod}}(\Lambda^e)\Leftrightarrow {}_1\Lambda_{\sigma}\oplus P\cong {}_1\Lambda_{\tau}\oplus Q$ in $\operatorname{mod}(\Lambda^e)$ for some P,Q projective.

Since Λ is connected and non-separable, ${}_1\Lambda_{\sigma}$ is the only non-projective indecomposable direct summand on the left, and similarly ${}_1\Lambda_{\sigma}$ on the right. Hence ${}_1\Lambda_{\sigma}\cong {}_1\Lambda_{\tau}$ in mod(Λ^e), therefore $[\sigma]=[\tau]$.

That's all folks!

Thanks for your attention!

Amiot, C. (2008). Sur les petites catégories triangulées [Doctoral dissertation, Université Paris Diderot - Paris 7]. Paris.

Eu, C.-H., & Schedler, T. (2009). Calabi-Yau Frobenius algebras. *J. Algebra*, 321(3), 774–815. https://doi.org/10.1016/j.jalgebra.2008.11.003

- Freyd, P. (1966). Stable homotopy. In Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) (pp. 121–172). Springer, New York. Retrieved May 9, 2017, from http://www.ams.org/mathscinet-getitem?mr=0211399
- Hanihara, N. (2020). Auslander correspondence for triangulated categories. Alg. Number Th., 14(8), 2037–2058. https://doi.org/10.2140/ant.2020.14.2037
- Heller, A. (1968). Stable homotopy categories. Bull. Amer. Math. Soc., 74, 28-63. https://doi.org/10.1090/S0002-9904-1968-11871-3

Jasso, G., & Muro, F. (2022). The Triangulated Auslander-Iyama Correspondence.

https://doi.org/10.48550/arXiv.2208.14413 with an appendix by Bernhard Keller.

Kadeishvili, T. V. (1988). The structure of the A(∞)-algebra, and the hochschild and harrison cohomologies. *Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR*, 91, 19–27. Retrieved March 22, 2021, from https:

//mathscinet.ams.org/mathscinet-getitem?mr=1029003

Keller, B. (1994). Deriving DG categories. Ann. Sci. École Norm. Sup. (4), 27(1), 63–102. https://doi.org/10/ghp4fw

- Keller, B., & Van den Bergh, M. (2011). Deformed Calabi–Yau completions. *Journal für die reine und angewandte Mathematik (Crelles Journal), 2011*(654). https://doi.org/10.1515/crelle.2011.031
 - Lin, Z. (2019). A general construction of n-angulated categories using periodic injective resolutions. *Journal of Pure and Applied Algebra*, 223(7), 3129–3149. https://doi.org/10.1016/J.JPAA.2018.10.012
 - Muro, F. (2022). Enhanced Finite Triangulated Categories.

 Journal of the Institute of Mathematics of Jussieu, 21(3), 741–783. https://doi.org/10.1017/S1474748020000250