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Classical Massey products

Given a differential graded associative algebra A and

a,b, c ∈ H∗(A), ab = 0, bc = 0,

their Massey product is

〈a,b, c〉 ⊂ H|a|+|b|+|c|−1(A).

If a = [α],b = [β], c = [γ], choose trivializing cochains

d(ζ) = αβ, d(ξ) = βγ,[
ζγ− (−1)|α|αξ

]
∈ 〈a,b, c〉,

d
(
ζγ− (−1)|α|αξ

)
= (αβ)γ− α(βγ) = 0

by associativity.



Classical Massey products

The Massey product is a coset

〈a,b, c〉 ∈ H|a|+|b|+|c|−1(A)
H|a|+|b|−1(A) · c + a · H|b|+|c|−1(A)

.

The denominator is called indeterminacy.

Example
If M is the complement of the Borromean
link, H1(M) is generated by three classes
a,b, c such that 〈a,b, c〉 is defined, fully
determined, and nontrivial.



Massey products and minimal models

Given a minimal A∞-model of A
(H∗(A),m3,m4, . . . ,mn, . . . ),

mn : H∗(A)⊗ n· · · ⊗H∗(A) −→ H∗(A), |mn| = 2− n,

it is well known that

m3(a,b, c) ∈ 〈a,b, c〉

whenever the Massey product is defined.

Therefore m3 is a replacement of Massey products with the
following advantages:

• Always defined.
• No indeterminacy.



Massey products and Hochschild cohomology

In a minimal A∞-model of A
(H∗(A),m3,m4, . . . ,mn, . . . ),

the operation m3 is a Hochschild cocycle. Its cohomology
class, studied by Benson, Krause, and Schwede 2004,

[m3] ∈ HH3,−1(H∗(A))

is called universal Massey product since, for any other
representative

[φ] = [m3], φ : H∗(A)⊗ H∗(A)⊗ H∗(A) → H∗(A),

we also have
φ(a,b, c) ∈ 〈a,b, c〉

whenever the Massey product is defined.



Beyond classical Massey products

Replace associative
algebras with algebras
over other operads

Consider longer Massey
products 〈x1, x2, . . . , xn〉



Quadratic operads
Let O = (E,R) be a quadratic Koszul graded operad with
generating reduced Σ-module E = {E(n)}n>0 and relations
sub-Σ-module R

R ⊂ E ◦(1) E =
⊕
T

E

σnE

σmσl

σ1
l

. . . . . .

. . .

.

5

241

3 ∼=
53

421



Quadratic operads

Hence a relation Γ ∈ R(n) looks like

Γ =
∑

µ

σnν

σmσl

σ1
l

. . . . . .

. . .

with µ,ν ∈ E.



Associative operad
Generator (product)

µ

21

|µ| = 0

Relation (associativity)

µ

3µ

21

−

µ

µ

32

1



Commutative operad
Generator (commutative product)

µ

21

=
µ

12

|µ| = 0

Relation (associativity)

µ

3µ

21

−

µ

µ

32

1



Lie operad

Generator (Lie bracket)

λ

21

= −
λ

12

|λ| = 0

Relation (Jacobi identity)

λ

3λ

21

+

λ

2λ

13

+

λ

1λ

32



Gerstenhaber operad
Generators: commutative product and shifted Lie bracket,

µ

21

=
µ

12

|µ| = 0
λ

21

=
λ

12

|λ| = −1

Relations: associativity, Jacobi identity, and Gerstenhaber
relation

λ

µ

32

1
−

µ

3λ

21

−

µ

λ

31

2



Operadic Massey products
Given a differential graded O-algebra A, a relation

Γ =
∑

µ

σnν

σmσl

σ1
l

... ...

...

and elements x1, . . . , xn ∈ H∗(A) such that

ν

xσmxσl ...

= 0

for all terms in Γ , we have an operadic Massey product

〈x1, . . . , xn〉Γ ⊂ H
∑n

i=1 |xi|+|Γ |−1(A).



Operadic Massey products

If xi = [yi], choose trivializing cochains

d(ρ) =
ν

yσmyσl . . .

.

Then ∑±
µ

yσnρyσ1
l

. . . . . .
 ∈ 〈x1, . . . , xn〉Γ .



Operadic Massey products

Example
• O = associative operad and Γ = associativity relation
recovers classical Massey products.

• O = Lie operad and Γ = Jacobi identity recovers the
Lie-Massey products of Retah 1977.

• Let M = G/H be the Heisenberg manifold, i.e. the quotient
of the Heisenberg group G of matrices1 a c

0 1 b
0 0 1

 , a,b, c ∈ R,

by the subgroup H with a,b, c ∈ Z. An invariant Poisson
structure on M makes Ω∗(M) a Gerstenhaber algebra with
a non-trivial Massey product in H∗(M,R) associated to the
Gerstenhaber relation.



Operadic Massey products

Proposition
Given a differential graded O-algebra A, the Massey product
〈x1, . . . , xn〉Γ ⊂ H∗(A) is a coset with indeterminacy

∑
µ

xσnH∗(A)xσ1
l

. . . . . .



Operadic Massey products and minimal models

A differential graded O-algebra A has a minimal model, which
is an O∞-algebra structure on H∗(A). Such a structure consists
of degree +1 maps

O¡(n)⊗ H∗(A)⊗ n· · · ⊗H∗(A) −→ H∗(A)
φ⊗ x1 ⊗ · · · ⊗ xn 7→ φ(x1, . . . , xn),

where O¡ is the Koszul dual of O, which satisfies

(O¡)(1) = E[1], (O¡)(2) = R[2].

Theorem
Given x1, . . . , xn ∈ H∗(A),

Γ [2](x1, . . . , xn) ∈ 〈x1, . . . , xn〉Γ

whenever the operadic Massey product is defined.



Operadic Massey products and cohomology
Given an O-algebra B, the operadic cohomology

H•,∗
O (B)

is computed from a complex

Cs,tO (B) =
∏
n>0

Homs+t((O¡)(s)(n)⊗Σn B⊗
n
,B)

with bidegree (+1,0) differential.

The minimal model of a differential graded O-algebra A
defines a universal operadic Massey product (Dimitrova 2012)

[(m2,n)n>0] ∈ H2,−1O (H∗(A))

represented by the minimal model operations

m2,n : (O
¡)(2)(n)⊗Σn H∗(A)⊗n −→ H∗(A), n > 0.



Operadic Massey products and cohomology

Theorem
Let A be a differential graded O-algebra and x1, . . . , xn ∈ H∗(A).
For any other representative of the universal operadic Massey
product

[(φn)n>0] ∈ H2,−1O (H∗(A)), φn : R(n)[2]⊗Σn H∗(A)⊗n → H∗(A),

and any relation Γ ∈ R(n) we also have

φn(Γ [2]⊗ x1 ⊗ · · · ⊗ xn) ∈ 〈x1, . . . , xn〉Γ

whenever the operadic Massey product is defined.



Long Massey products

If A is a differential graded associative algebra and
x1, . . . , xn ∈ H∗(A), the Massey product of length n is

〈x1, . . . , xn〉 ⊂ H
∑n

i=1 |xi|+2−n(A).

• 〈x1, x2〉 = {±x1x2}.
• 〈x1, x2, x3〉 is the classical Massey product.
• 〈x1, . . . , xn〉 may be empty. It is non-empty iff

0 ∈ 〈xi, xi+1, . . . , xi+j〉, j < n− 1.

• The indeterminacy is unknown in general.



Long Massey products and minimal models

Given a minimal A∞-model of A
(H∗(A),m3,m4, . . . ,mn, . . . ),

mn : H∗(A)⊗ n· · · ⊗H∗(A) −→ H∗(A), |mn| = 2− n,

it was long believed that

±mn(x1, . . . , xn) ∈ 〈x1, . . . , xn〉

whenever the Massey product of length n is defined.

Example (Buijs, Moreno-Fernández, and Murillo 2020)
The previous ‘equation’ does not hold in the Sullivan model of
a space S5 × S5 × Y , where Y fits in a fibration

S5 × S5 × S5 × S7 × S7 → Y → S3 × S3 × S3 × S3.



Long Massey products and minimal models

Theorem (Buijs, Moreno-Fernández, and Murillo 2020)
Given x1, . . . , xn ∈ H∗(A), if mi = 0 for 2 6 i 6 n− 2 then

±mn(x1, . . . , xn) ∈ 〈x1, . . . , xn〉

whenever the Massey product of length n is defined.

If H∗(A) is unital then m2 6= 0. Nevertheless, this is not a
limitation if A is augmented.



Sparse cohomology

Assume H∗(A) is concentrated in degrees dZ. For degree
reasons,

mn = 0, d - 2− n.

Hence a minimal A∞-model of A looks like
(H∗(A),md+2,m2d+2, . . . ,mid+2, . . . ).

Theorem (Jasso and Muro 2022)
In the previous situation, given x1, . . . , xd+2 ∈ H∗(A)

±md+2(x1, . . . , xd+2) ∈ 〈x1, . . . , xd+2〉

whenever the Massey product of length d+ 2 is defined.



Sparse cohomology

If H∗(A) is concentrated in degrees dZ, in a minimal A∞-model
of A

(H∗(A),md+2,m2d+2, . . . ,mid+2, . . . )

the operation md+2 is a Hochschild cocycle. Its cohomology
class

[md+2] ∈ HHd+2,−d(H∗(A))

is called universal Massey product of length d+ 2.

Proposition (Jasso and Muro 2022)
For any other representative

[φ] = [md+2], φ : H∗(A)⊗d+2 → H∗(A),

if the Massey product of length d+ 2 is defined then

φ(x1, . . . , xd+2) ∈ 〈x1, . . . , xd+2〉.
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