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The space of units

Being unital is a property rather than a structure.

iso forget 1
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A vertex is an associative algebra A
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The space of units

Being unital is a property rather than a structure.

fiber at A forget 1
Sp:flce of ber a |uAS(V‘\;e| |A5$e|
units of A

THEOREM

The space of units is either empty or contractible if V' is sim-
plicial, complicial, or spectral.
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The space of units

Space of units of A

l fiber at A

? fiber at X |uAs("“,’e| | we |
l htpy. pullback forgetful functors

? fiber at X |AS(V‘\/7e| - |(Vwe|

Here A is an associative algebra with underlying object X.
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The space of algebra structures

Space of associative fiber at X IAs We | _foreet ) orget

we
algebra structures on X — [V

Theorem (Rezk’96, M’'15)

The space of associative algebra structures on a fibrant and
cofibrant object X is

MapOp (As,End(X)).

Op = the category of nonsymmetric operads in V.
As = the associative operad in V.

End(X) = the endomorphism operad of X.



An opPerAD P = {P(n)},>0 is a sequence of objects in V equipped
with composition operations

0;: P() @ P(t) — P(s+t—1), 1<i<s,

and an identity in arity 1 satisfying the laws of tree grafting.
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Anoperad P = {P(n)},,>0 is a sequence of objects in V equipped
with composITION Operations

0;: P() @ P(t) — P(s+t—1), 1<i<s,

and an identity in arity 1 satisfying the laws of tree grafting.

Yoy -Y

arity 3 arity 2 arity 4



Operads

Definition

An oreraD P = {P(n)},>0 is a sequence of objects in V equipped
with composition operations

0;: P(s) ® P(t) — P(s+t—1), 1<i<s,

and an identity in arity 1 satisfying the laws of tree grafting.

associativity identity



The ASSOCIATIVE OPERAD As consists of
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contracting



The UNITAL ASSOCIATIVE OPERAD UAS consists of
. \+/ y o

Composition away from the identity is given by grafting and
contracting, except for
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Operads

Example
The ENDOMORPHISM OPERAD of an object X in V,

End(X)(n) = Homq, (X®", X).

Definition

A P-ALGEBRA is a map of operads P — End(X).

Theorem (Rezk, Hinich, Berger-Moerdijk. . . Lyubashenko, M.)

The category Op of operads in “V inherits a model structure.

11



The space of algebra structures

Space of P-algebra fiberatX |Pwe| forget el
structures on X

Theorem (Rezk’96, M’'15)

The space of P-algebra structures on a fibrant and cofibrant
object X is
MapOp (P, End(X)).

P = a nonsymmetric operad in V with cofibrant components,
e.g. P = As or uAs, the unital associative operad.



The spaces of units and algebra structures

Space of units of A

l fiber at A

Map,, (uAs, End(X)) _ fiberatX | JuASHe| —— [Pwe]

l htpy. pullback forgetful functors

Map,, (As, End(X)) — XX, jagme) _, jpwey

Here A is an associative algebra with underlying object X.
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The spaces of units and algebra structures

Space of units of A

l fiber at A

Map,, (uAs, End(X)) _ fiberatX | JuASHe| —— [Pwe]

" l htpy. pullback forgetful functors

Map,, (As, End(X)) — XX, jagme) _, jpwey

Here A is an associative algebra with underlying object X.

The reD MmaP is induced by the canonical map

: As — uAs.
¢
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A homotopy epimorphism

For any operad P in V, the fibers of the following map are
either empty or contractible,

o Mapop(uAs,P) — Mapop(As, P).

A map f: X — Y in a MoDEL category C is a HOMOTOPY
erIMORPHISM if any of these equivalent statements holds:

O f*: Map,(Y, Z) — Map (X, Z) has empty or contactible
fibers for any Z in C.
O In the following homotopy pushout the Rep ARrROWS are w.e.

X—Y
flhtpy. push.l
Y — YLy



A homotopy epimorphism

For any operad P in V, the fibers of the following map are
either empty or contractible,

o Mapop(uAs,P) — MapOP(As, P).

Equivalently, one (and hence both) of the two rRep MaPs in the
following homotopy pushout in Op is a weak equivalence,

¢
As —— uAs

¢ lhtpy. pushoutl

uAs — uAs UHKS uAs



The homotopy pushout

If Op were LEFT PROPER, the previous homotopy pushout would
be the following pushout

¢

TN

AS ———— UwAS —— UAs

¢ l pushout l

UAs —— UAS Jps UooAs
Y

15



The homotopy pushout

If Op were LEFT PROPER, the previous homotopy pushout would
be the following pushout

¢

TN

As ——— > UewAS —— uAs

¢ l pushout l

UAs —— UAS Jps UooAs
Y

The Uoo ASSOCIATIVE OPERAD.

15



Relative left properness

Given a pushout diagram in Op

P——>R

f l pushout lg

Q—— QlJpR

such that the components of P and Q are cofibrant in V, if f is
a weak equivalence then so is g.



Specific cases



In the category of groupoids

What are algebras over these operads?

¢
A/\N
As UcAsS uAs

0] l pushout l

uAs >T> UAS | Jps UsoAS
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What are algebras over these operads?

¢
A/\N
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In the category of groupoids

What are algebras over these operads?

¢
A/\N
As UcAs uAs

0] l pushout l

uAs >T> UAS | Jps UsoAS

The tensor unit can be canonically strictified
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In the category of groupoids

What are algebras over these operads?

¢
A/\
As UcAsS uAs

0] l pushout l

uAs >T> UAS | Jps UsoAS

Strictly associative non-unital monoidal
groupoids

18



In the category of groupoids

What are algebras over these operads?

¢
A/\N
As UcAsS uAs

o} l pushout l

uAs >T> UAS | Jps UsoAS

Forgetting the unit

18



In the category of groupoids

What are algebras over these operads?

¢
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As UcAsS uAs

0] l pushout l
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Strictly associative monoidal groupoids
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In the category of groupoids

What are algebras over these operads?

¢
A/\
As UwAs uAs

0] l pushout l

uAs >T> UAS (s UcoAs

Strictly associative monoidal groupoids
equipped with an extra strict unit

This is the same as a strictly associative and strictly unital
monoidal groupoid equipped with an isomorphism 1 = I.

18



In the category of groupoids

What are algebras over these operads?

¢
A/\N
As UcAsS uAs

0] l pushout l

uAs >T> UAS | Jps UsoAS

IS A WEAK EQUIVALENCE!

18



In the category of chain complexes

¢

TN

As — uooAS ;) uAs

¢ l pushout l

UAs >T> UAS | s UcoAS

Generated by

\/
|

in degree 0 with trivial differential and relation

\/ \/
\/ =\
| |
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In the category of chain complexes

¢

TN

As —m—mMmM8M8 — uooAS ;) UAs

¢ l pushout l

UuAs >T> UAS | s UcoAS

Generated by

\/
| |

in degree 0 with trivial differential and relations

\/ \/
V =V \V4 I \/
| | l=1=1
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In the category of chain complexes

¢

2N

As —m—mMmM8M8 — uooAS ;) uAs

¢ l pushout l

UAs >T> UAS | s UcoAS
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In the category of chain complexes

By relative left properness, A can be obtained as

A ——— uAo

~ l pushout l ~ N
A

AsS /> U As ~

M uAs

¢
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In the category of chain complexes

By relative left properness, A can be obtained as

A — UA,

~ l pushout l ~ N
A

AsS /> U As ~

M uAs

¢

Stasheff’s operad, cellular chains on associahedra
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In the category of chain complexes

By relative left properness, A can be obtained as

Ay —— UA»

~ l pushout l ~ N
A

AsS /> U As ~

M uAs

¢

Fukaya—Oh—-Ohta-Ono’s operad, cellular chains on unital
associahedra [M.—Tonks'14]

v 4b® -
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In the category of chain complexes

The operad uwAs is generated by

Y T and all corked corollas like V

The first two generators have degree 0 and trivial differential.
The degree of a corked corolla is

2 - #{corks} + #{leaves} — 2.
The only relation is the one in As, hence the inclusion
A1 AS ™ UeAs

is a cofibration. The ideal generated by corked corollas is
contractible and its quotient is uAs, so

UcAS — UuAs.

21



In the category of chain complexes

We define the exhaustive filtration by cofibrations
As =upAs C --- CuyAs C - -+ C UxAS

where, for n > 1, u,As is the suboperad of u,As generated by

Y T and all corked corollas with < 7 corks.
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In the category of chain complexes

We define the exhaustive filtration by cofibrations
As =upAs C --- CuyAs C - -+ C UxAS

where, for n > 1, u,As is the suboperad of u,As generated by

Y T and all corked corollas with < 7 corks.

Lemma

The inclusion uAs | Js us—1As C uAs | s u,As is always a weak
equivalence.

In particular : uAs = uAs | s UpAs C uAs [ s UeoAs too.



In the category of chain complexes

By induction on 7 and relative left properness,

UAS | Jas Uy—1AS > UAs s UyAs

~ l pushout l ~

uAs Q
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In the category of chain complexes

By induction on 7 and relative left properness,

UAS | Jas Uy—1AS > UAs s UyAs

~ l pushout l ~

uAs Q

The reD RETRACTION is defined by

11, VHO.
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In the category of chain complexes

By induction on 7 and relative left properness,

UAS | Jas Uy—1AS > UAs s UyAs

~ l pushout l ~

uAs Q

For n =1, the operad Q is generated by

| Y T and all corked corollas with 1 cork.

The only relations are the two ones in uAs.
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In the category of chain complexes

By induction on 7 and relative left properness,

UAS | Jas Uy—1AS > UAs s UyAs

~ l pushout l ~

uAs Q

For n =1, the operad Q is generated by

| Y T and all corked corollas with 1 cork.

The only relations are the two ones in uAs. The differential is

d( y)zitermsoftheformy, ,
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In the category of chain complexes

By induction on 7 and relative left properness,

UAS | Jas Uy—1AS > UAs s UyAs

~ l pushout l ~

uAs Q

For n > 1, the operad Q is generated by

| Y and all corked corollas with n corks.

The only relations are the two ones in uAs. The differential is

d ( V ) = + terms of the form ,

23



In the category of chain complexes

Any DG-operad of the form P = (F(S), d) has a cylinder
IP = (F({pS LI XS 114S),d)
such that ip, i1: P — IP are DG-maps and

d(Xx) = ipx — i1x + extra terms.



In the category of chain complexes

Any DG-operad of the form P = (F(S), d) has a cylinder
IP = (F(ipS LI XS 114;S),d)
such that ip, i1: P — IP are DG-maps and
d(Xx) = ipx — i1x + extra terms.

Qis free and linear relative to uAs and there is a strong
deformation retraction

uAs 2 Q On

h(ZT):iY, h(zy)ziv.
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Theorem
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a Quillen pair Op,, 2 Op.,, and the derived left Quillen func-
tor in Ho Op,,, 2 Ho Op,,,, preserves ¢: As — uAs.
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Any weak symmetric monoidal Quillen pair V 2 W induces
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Dold-Kan equivalence [Schwede-Shipley’03].



Transfer to other categories

Theorem

Any weak symmetric monoidal Quillen pair V 2 W induces
a Quillen pair Op,, 2 Op.,, and the derived left Quillen func-
tor in Ho Op,,, 2 Ho Op,,,, preserves ¢: As — uAs.

Derived left Quillen functors preserve homotopy
epimorphisms. They also reflect them if they are fully faithful.

Ch(k) & Ch(k)sp 2Mod(k)2”" < Set®” 2 Grd.

Free module + forgetful, fundamental groupoid 4 nerve.



Transfer to other categories

Theorem

Any weak symmetric monoidal Quillen pair V 2 W induces
a Quillen pair Op,, 2 Op.,, and the derived left Quillen func-
tor in Ho Op,,, 2 Ho Op,,,, preserves ¢: As — uAs.

Derived left Quillen functors preserve homotopy
epimorphisms. They also reflect them if they are fully faithful.

Ch(k) & Ch(k)sp 2Mod(k)2”" < Set®” 2 Grd.

Free module + forgetful, fundamental groupoid 4 nerve.

In simplicial sets, the map ¢: uAs — uAs s UsoAs induces an
equivalence on fundamental groupoids and a
quasi-isomorphism in homology, so it is a weak equivalence.



Transfer to other categories

Theorem

Any weak symmetric monoidal Quillen pair V 2 W induces
a Quillen pair Op,, 2 Op.,, and the derived left Quillen func-
tor in Ho Op,,, 2 Ho Op,,,, preserves ¢: As — uAs.

Derived left Quillen functors preserve homotopy
epimorphisms. They also reflect them if they are fully faithful.

Set*™ 2 Spectra

Oth

Infinite suspension H term.
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Transfer to other categories

Theorem

Any weak symmetric monoidal Quillen pair V 2 W induces
a Quillen pair Op,, 2 Op.,, and the derived left Quillen func-
tor in Ho Op,,, 2 Ho Op,,,, preserves ¢: As — uAs.

Derived left Quillen functors preserve homotopy
epimorphisms. They also reflect them if they are fully faithful.

V s Ch(k).
Complicial V.



Transfer to other categories

Theorem

Any weak symmetric monoidal Quillen pair V 2 W induces
a Quillen pair Op,, 2 Op.,, and the derived left Quillen func-
tor in Ho Op,,, 2 Ho Op,,,, preserves ¢: As — uAs.

Derived left Quillen functors preserve homotopy
epimorphisms. They also reflect them if they are fully faithful.

V < Spectra.
Spectral V.
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