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The space of units

Being unital is a property rather than a structure.

Space of

units of A
|

uAs

isowe

V

| |

As

isowe

V

|

forget 1

Closed symmetric monoidal categoryUnital associative algebras inVAssociative algebras inVFaithfulFully faithful!Closed symmetric monoidal model categoryA vertex is an associative algebra A

fiber at A

Theorem

The space of units is either empty or contractible if V is sim-

plicial, complicial, or spectral.
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How to compute it



The space of units
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forgetful functors

?

?

fiber at X

fiber at X

htpy. pullback

Space of units of A

fiber at A

Here A is an associative algebra with underlying object X.
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The space of algebra structures

|

As iso

we

V

| |

V
iso

we
|

forget

Faithful

Space of associative

algebra structures on X
fiber at X

Theorem (Rezk’96, M’15)

The space of associative algebra structures on a fibrant and

cofibrant object X is

Map
Op

(As, End(X)).

Op � the category of nonsymmetric operads inV.

As � the associative operad inV.

End(X) � the endomorphism operad of X.
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Operads

Definition

Anoperad P � {P(n)}n≥0 is a sequence of objects inV equipped

with composition operations

◦i : P(s) ⊗ P(t) −→ P(s + t − 1), 1 ≤ i ≤ s,

and an identity in arity 1 satisfying the laws of tree grafting.

arity 3

◦2

arity 2

�

arity 4
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Operads

Example

The associative operad As consists of

· · ·

Composition away from the identity is given by grafting and

contracting

�
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Operads

Example

The unital associative operad uAs consists of

· · ·

Composition away from the identity is given by grafting and

contracting, except for

� �

10



Operads

Example

The endomorphism operad of an object X inV,

End(X)(n) � HomV (X⊗n ,X).

Definition

A P-algebra is a map of operads P→ End(X).

Theorem (Rezk, Hinich, Berger–Moerdijk. . . Lyubashenko, M.)

The category Op of operads inV inherits a model structure.
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The space of algebra structures

Space of P-algebra
structures on X

|Pwe

V
| |V

we
|

forget
fiber at X

Theorem (Rezk’96, M’15)

The space of P-algebra structures on a fibrant and cofibrant

object X is

Map
Op

(P, End(X)).

P � a nonsymmetric operad inV with cofibrant components,

e.g. P � As or uAs, the unital associative operad.

12



The spaces of units and algebra structures

|uAswe

V
| |V

we
|

|Aswe

V
| |V

we
|

forgetful functors

Map
Op

(uAs, End(X))

Map
Op

(As, End(X))

fiber at X

fiber at X

φ∗

htpy. pullback

Space of units of A

fiber at A

Here A is an associative algebra with underlying object X.

The red map is induced by the canonical map

φ : As −→ uAs.
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A homotopy epimorphism

Theorem

For any operad P in V, the fibers of the following map are

either empty or contractible,

φ∗ : Map
Op

(uAs, P) −→Map
Op

(As, P).

Equivalently, one (and hence both) of the two red maps in the

following homotopy pushout in Op is a weak equivalence,

As uAs

uAs uAs
⋃L
As uAs

htpy. pushout

φ

φ
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Theorem
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either empty or contractible,

φ∗ : Map
Op

(uAs, P) −→Map
Op

(As, P).

A map f : X→ Y in a category C is an epimorphism if any of

these equivalent statements holds:

# f ∗ : HomC (Y,Z) → HomC (X,Z) is injective for any Z in C.

# In the following pushout the red arrows are isomorphisms

X Y

Y Y
⋃

X Y
pushout

f

f
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The homotopy pushout

If Op were left proper, the previous homotopy pushout would

be the following pushout

As u∞As uAs

uAs uAs
⋃
As u∞As

pushout

λ

φ

ψ

∼

φ

The u∞ associative operad.
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Relative left properness

Theorem

Given a pushout diagram in Op

P R

Q Q
⋃
P R

pushoutf g

such that the components of P and Q are cofibrant inV, if f is
a weak equivalence then so is g.
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Specific cases



In the category of groupoids

What are algebras over these operads?

As u∞As uAs

uAs uAs
⋃
As u∞As

pushout

λ

φ

ψ

∼

φ

Strictly associative and strictly unital

monoidal groupoids

Strictly associative monoidal groupoidsThe tensor unit can be canonically strictified

Strictly associative non-unital monoidal

groupoids

Forgetting the unit

Strictly associative monoidal groupoids

equipped with an extra strict unit
is a weak equivalence!

This is the same as a strictly associative and strictly unital

monoidal groupoid equipped with an isomorphism 1 � I.

18
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In the category of chain complexes

As

?

u∞As uAs

uAs uAs
⋃
As u∞As

pushout

λ

φ

ψ

∼

φ

Generated by

in degree 0 with trivial differential and relation

�

19
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In the category of chain complexes

By relative left properness, λ can be obtained as

A∞ uA∞

As u∞As

uAs

pushout∼ ∼

λ

∼

φ

∼

Stasheff’s operad, cellular chains on associahedra

· · ·

Fukaya–Oh–Ohta–Ono’s operad, cellular chains on unital

associahedra [M.–Tonks’14]

· · ·

20
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In the category of chain complexes

The operad u∞As is generated by

and all corked corollas like

The first two generators have degree 0 and trivial differential.

The degree of a corked corolla is

2 · #{corks} + #{leaves} − 2.

The only relation is the one in As, hence the inclusion

λ : As� u∞As

is a cofibration. The ideal generated by corked corollas is

contractible and its quotient is uAs, so

u∞As
∼

−→ uAs.

21



In the category of chain complexes

We define the exhaustive filtration by cofibrations

As � u0As ⊂ · · · ⊂ unAs ⊂ · · · ⊂ u∞As

where, for n ≥ 1, unAs is the suboperad of unAs generated by

and all corked corollas with ≤ n corks.

Lemma

The inclusion uAs
⋃
As un−1As ⊂ uAs

⋃
As unAs is always a weak

equivalence.

In particular ψ : uAs � uAs
⋃
As u0As ⊂ uAs

⋃
As u∞As too.

22
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In the category of chain complexes

By induction on n and relative left properness,

uAs
⋃
As un−1As uAs

⋃
As unAs

uAs Q

pushout∼

∼

∼

The red retraction is defined by

7→ , 7→ 0.

For n1, the operad Q is generated by

and all corked corollas with .

The only relations are the two ones in uAs. The differential is

d *
,

+
-
� − , d

( )
� − .d

( )
� ± terms of the form , , .d

( )
� ± terms of the form , .

23
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In the category of chain complexes

Theorem

Any DG-operad of the form P � (F(S), d) has a cylinder

IP � (F(i0Sq ΣSq i1S), d)

such that i0 , i1 : P→ IP are DG-maps and

d(Σx) � i0x − i1x + extra terms.

Q is free and linear relative to uAs and there is a strong

deformation retraction

uAs� Q	h

h
(
Σ

)
� ± , h

(
Σ

)
� ± .
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Transfer to other categories

Theorem

Any weak symmetric monoidal Quillen pairV �W induces

a Quillen pair Op
V
� Op

W
and the derived left Quillen func-

tor in HoOp
V
� HoOp

W
preserves φ : As→ uAs.

Derived left Quillen functors preserve homotopy

epimorphisms. They also reflect them if they are fully faithful.

Ch(k) �Ch(k)≥0 �Mod(k)∆op � Set
∆op �Grd .

SpectralV.

In simplicial sets, the map ψ : uAs→ uAs
⋃
As u∞As induces an

equivalence on fundamental groupoids and a

quasi-isomorphism in homology, so it is a weak equivalence.
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Set
∆op � Spectra

Infinite suspension a 0
th
term.
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