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An old question

When is a differential graded algebra A over a field determined by its
cohomology H∗(A)?

We say that A is formal if it is quasi-isomorphic to H∗(A).

Theorem (Kadeishvili’88)

If HHn,2−n(H∗(A)) � 0, n ≥ 3, then A is formal.
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Formality and Massey products

How to detect non-formal differential graded algebras?

Given x, y, z ∈ H∗(A) with x · y � 0 � y · z, the Massey product

〈x, y, z〉 ⊂ H |x|+|y|+|z|−1(A)

is a coset of
x ·H∗(A) +H∗(A) · z ⊂ H∗(A).

If A is formal, then always

0 ∈ 〈x, y, z〉.
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Massey products and A∞-algebras

Kadeishvili showed that any differential graded algebra A is
determined by a minimal A∞-algebra structure on its
cohomology

(H∗(A)︸︷︷︸
graded
algebra

,m3 , . . . ,mn , . . . ).

The ternary operation m3 is a Hochschild cocycle and

{m3} ∈ HH3,−1(H∗(A))

is called universal Massey product since

m3(x, y, z) ∈ 〈x, y, z〉.

If A is formal {m3} � 0 too.
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Massey products and triangulated categories

A triangulated category T with suspension functor Σ gives
rise to a graded category

T
n(X,Y) � T (X,ΣnX)

equipped with a Massey product operation such that exact
triangles

X
f
−→ Y

i
−→ Z

q
−→ ΣX

are characterized by

−1X ∈ 〈q, i, f 〉 ∈ T −1(X,ΣX) � T (X,X).

In this context formality implies that all exact triangles split,
which seldom happens.
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A new question

When is a differential graded algebra A over a field determined by its
cohomology H∗(A) and its universal Massey product?

HH•,?(H∗(A)) is a commutative algebra.

Theorem

Suppose

HHs,t(H∗(A)) −→ HHs+3,t−1(H∗(A))
x 7→ {m3} · x

is an isomorphism for s ≥ 2. Then A is uniquely determined
up to quasi-isomorphism byH∗(A) and {m3} ∈ HH3,−1(H∗(A)).
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An application

Corollary

Differential graded models for locally finite triangulated cate-
gories T are uniquely determined by their universal Massey
product.

# Bounded derived categories of algebras of finite
representation type.

# Stable module categories of self-injective algebras of finite
representation type.

# Cluster categories.
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The classifying space

A fixed base point A ∈ BD allows for the construction of the
Bousfield–Kan’72 fringed spectral sequence of the tower,

BD � BA∞ � limBAn BA1 �BCBAn+1 BAn. . . . . .

D � category of differential graded algebras
An � category of An-algebras (1 ≤ n ≤ ∞)
C � category of cochain complexes

BM � classifying space of a model categoryM
� nerve of the category of weak equivalences inM
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Bousfield–Kan’s fringed spectral sequence

Es,t
2 �

s>0
HHs+1,t−1(H∗(A)) �⇒ πt−s(BD ,A)
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The fringed line and uniqueness

Es,s
r �weak equivalence classes of As+1-algebras which extend

to As+r-algebras and restrict to the same As-algebra as A, s ≤ r.

r

s

t

If the green line vanishes, the Ar-algebra underlying A extends
to an An-algebra for all n ≥ r in an essentially unique way.
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The fringed line and uniqueness

The obstruction to A∞-uniqueness is the lim1 in the Milnor s.e.s.

lim
n

1π1(BAn ,A) ↪→ π0(BD ,A) � lim
n
π0(BAn ,A)

r

s

t 1

which vanishes provided lim1
n E

s,s+1
n � 0 for all s ≥ 0.

11



The fringed line and uniqueness

The obstruction to A∞-uniqueness is the lim1 in the Milnor s.e.s.

lim
n

1π1(BAn ,A) ↪→ π0(BD ,A) � lim
n
π0(BAn ,A)

r

s

t 1

which vanishes provided lim1
n E

s,s+1
n � 0 for all s ≥ 0.

11



The fringed line and uniqueness

If the green half-line vanishes, Es,s
r � 0, s ≥ r, then A is uniquely

determined by its underlying Ar-algebra.

r

s

t 1

We’d like to show that Es,s
3 � 0 for s ≥ 3, since the A3-algebra

underlying A is determined by {m3} ∈ HH3,−1(H∗(A)).
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The extended spectral sequence

We have extended the spectral sequence to the blue region in
such a way that Es,t

2 � HHs+1,t−1(H∗(A)) for s > 0 where defined.

po
int
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set
s

r

2r−1
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t

It consists of vector spaces in the blue region and in t − s ≥ 2.
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Beyond the second page

HH•,?(H∗(A)) is a commutative algebra and a Lie algebra in a
compatible way (Gerstenhaber algebra).

Theorem

Recall that Es,t
2 � HHs+1,1−t(H∗(A)) for s > 0. The second dif-

ferential is the Lie bracket with the universal Massey product,

d2 � [{m3},−] : HHs+1,1−t(H∗(A)) −→ HHs+3,−t(H∗(A)).
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Beyond the second page

The product by the Euler class {δ} ∈ HH1,0(H∗(A)),
δ(x) � |x| · x is a nullhomotopy for the product by {m3},

{m3} · x � [{m3}, {δ} · x] + {δ} · [{m3}, x].

Proposition

If the following map is an isomorphism for s ≥ 2, then E3 is
concentrated in s � 0, 1,

HHs,t(H∗(A)) −→ HHs+3,t−1(H∗(A))
x 7→ {m3} · x

s

t
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How do we get the extension?

The homotopy fiber of BAr+s → BAr is an infinite loop space
for 1 ≤ s ≤ r.

An � operad for An-algebras.

Proposition

For 1 ≤ s ≤ m ≤ r, there is a linear Am-bimodule Bm,r,s and a
cofiber sequence in the homotopy category of operads rel. Am

FAm (Σ−1AmBm,r,s) → Ar� Ar+s.
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Uniqueness of A∞-structures. . .

How do we get the extension?

Given an operad P � {P(n)}n≥0, a linear P-module B is a sequence
B � {B(n)}n≥0 equipped with maps, 1 ≤ i ≤ s,

P(s) ⊗ B(t)
◦i
−→ B(s + t − 1)

◦i
←− B(s) ⊗ P(t)

satisfying the obvious associativity and unitality laws, e.g. B � P.

The category of linear P-modules is a pointed stable C-model
category and there is a Quillen pair

linear P-modules
FP
� P ↓ Operads.
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