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The derived category

Let A be an abelian category, e.g. A = Mod-R, right modules over a
ring R.

The category C(A) of complexes in A,

X = {· · · → Xn−1
d−→ Xn

d−→ Xn+1 → · · · } (d2 = 0),

is also abelian.

Definition
A morphism f : X ∼→ Y in C(A) is a quasi-isomorphism if it induces
isomorphisms in cohomology,

Hn(f ) : Hn(X )
∼=−→ Hn(Y ), n ∈ Z.
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The derived category

Example
If P and I are a projective and an injective resolution of M in A,
respectively, then we have quasi-isomorphisms,

P

∼
��

· · · // P−2 //

��

P−1 //

��

P0 //

����

0 //

��

0

��

// · · ·

M

∼
��

· · · // 0 //

��

0 //

��

M //
� _

��

0 //

��

0

��

// · · ·

I · · · // 0 // 0 // I0 // I1 // I2 // · · ·

Fernando Muro Triangulated categories



The derived category

Definition
The derived category D(A) is a category equipped with a functor

p : C(A) −→ D(A)

such that:
p takes quasi-isomorphisms to isomorphisms,
p is universal among the functors satisfying this property, i.e. if
p′ : C(A)→ B takes quasi-isomorphisms to isomorphisms then
there exists a unique functor p′′ : D(A)→ B such that p′ = p′′p,

C(A)
p
//

p′
##HHHHHHHHH

D(A)

p′′∃ !
��

B
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The derived category

Question: What’s the algebraic structure of D(A)?

Answer: Triangulated category!

Remark
The derived category need not exist [Freyd’64].
If it exists then it is uniquely defined up to isomorphism.
An object M in A becomes isomorphic to any projective resolution
in D(A), and also to any injective resolution.
The cohomology functor factors through the derived category,

C(A)
p
//

H∗
##GGGGGGGGG
D(A)

∃ !
��
�
�
�

AZ

skip example
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The derived category

Example
If k is a field, the previous cohomology functor

H∗ : D(Mod-k)
'−→ (Mod-k)Z

is an equivalence of categories.

If R is a hereditary ring, such as Z, k [X ], or the path algebra of a
quiver, then the functor

H∗ : D(Mod-R) −→ (Mod-R)Z

is full and induces a bijection on isomorphism classes of objects,
but it is not an equivalence.
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The derived category

Remark
One can similarly define the derived category D(E) of an exact
category E ⊂ A, in this case cohomology is a functor

H∗ : C(E) −→ AZ.

One can also define the derived category of a differential graded
algebra A, denoted by D(A), replacing the category of complexes
with Mod-A, for which the cohomology functor is

H∗ : Mod-A −→ Mod-H∗(A).

One can more generally consider differential graded categories,
a.k.a. DGAs with several objects.
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The homotopy category

Definition
A morphism f : X → Y in C(A) is nullhomotopic f ' 0 if there exist
morphisms, called the homotopy,

h : Xn −→ Yn−1, n ∈ Z,

such that
f = hd + dh.

The homotopy category K(A) is the quotient of C(A) by the ideal of
nullhomotopic morphisms.

Two morphisms f ,g : X → Y in C(A) are homotopic f ' g if f − g is
nullhomotopic.
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The homotopy category

The homotopy category approaches the derived category.

Proposition
Two homotopic morphisms in C(A) map to the same morphism in the
derived category D(A). In particular there is a factorization

C(A) // //

p
##GGGGGGGG
K(A)

∃ !
��
�
�
�

D(A)

The algebraic structure of K(A) is also that of a triangulated category.
We will construct D(A) from K(A).
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Exact triangles

Definition
The mapping cone of a morphism f : X → Y in C(A) is the complex Cf
with

(Cf )n = Yn ⊕ Xn+1

and differential

dCf
: (Cf )n−1 = Yn−1 ⊕ Xn

( dY f
0 −dX

)
−→ Yn ⊕ Xn+1 = (Cf )n.

The suspension or shift ΣX of X in C(A) is the mapping cone of the
trivial morphism 0→ X, i.e. (ΣX )n = Xn+1, dΣX = −dX .

The obvious sequence of morphisms in C(A),

X f→ Y i→ Cf
q→ ΣX ,

is called an exact triangle when mapped to K(A) or D(A).
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Exact triangles

Question: Where do short exact sequences in C(A) go in D(A)?

Proposition

Given a short exact sequence X
f
↪→ Y

g
� Z in C(A) there is a

quasi-isomorphism Cf
∼→ Z defined by

(Cf )n = Yn ⊕ Xn+1
(g

0)−→ Zn, n ∈ Z,

and the following diagram commutes in C(A),

X
f // Y

i //

g
    

@@@@@@@@ Cf

∼
��

q
// ΣX

Z
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Triangulated categories

Definition
A suspended category is a pair (T,Σ) given by:

An additive category T.

A self-equivalence Σ: T '→ T called suspension or shift.

A triangle in (T,Σ) is a diagram of the form

X f−→ Y i−→ C
q−→ ΣX .

Here f is called the base. This diagram can also be depicted as

X
f // Y

i��~~~~~~~

C
q

+1
__???????
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Triangulated categories

Definition
A morphism of triangles in (T,Σ) is a commutative diagram

X
f //

α

��

Y
i //

β

��

C
q
//

γ

��

ΣX

Σα
��

X ′
f ′ // Y ′

i ′ // C′
q′
// ΣX ′
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Triangulated categories

Definition (Puppe, Verdier’60s)
A triangulated category is a triple (T,Σ,4) consisting of a suspended
category (T,Σ) and a class of triangles 4, called exact triangles,
satisfying the following four axioms:

TR1 The class 4 is closed by isomorphisms, every morphism
f : X → Y in T is the base of an exact triangle

X f−→ Y i−→ C
q−→ ΣX ,

and the trivial triangle

X 1X−→ X −→ 0 −→ ΣX

is always exact.
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Triangulated categories

Definition
TR2 A triangle

X f−→ Y i−→ C
q−→ ΣX

is exact if and only if its translation

Y i−→ C
q−→ ΣX −Σf−→ ΣY

is exact.
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Triangulated categories

Definition
TR3 Any commutative square between the bases of two exact triangles

can be completed to a morphism of triangles

X
f //

α

��

Y
i //

β

��

C
q
//

γ

��

ΣX

Σα
��

X ′
f ′ // Y ′

i ′ // C′
q′
// ΣX ′

If (T,Σ,4) satisfies just these three axioms we say that it is a Puppe
triangulated category.

skip example
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Triangulated categories
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��

Y
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Triangulated categories

Example (TR3 for K(A))
In the homotopy category K(A),

X
f //

α

��

Y
i //

β

��

Cf
q
//

γ

��

ΣX

Σα
��

X ′
f ′ // Y ′

i ′ // Cf ′
q′
// ΣX ′

We choose representatives of these homotopy classes, that we denote
by the same name.

Let h : Xn+1 → Y ′n, n ∈ Z, be a homotopy βf ' f ′α. Define

γ : (Cf )n = Yn ⊕ Xn+1
(β h

0 α)
−→ Y ′n ⊕ X ′n+1 = (Cf ′)n.
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Triangulated categories
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Triangulated categories

Definition (Verdier’s octahedral axiom)

TR4 Given two composable morphisms X f→ Y
g→ Z in T, and three

exact triangles with bases f , g and gf ,

X

Z

Cf

Cgf

Cg

Y

''

//

f

44

gf

OO

__?????????????

**TTTTTTTTTTTTTTTT 77ooooooooo

+1

��

+1oo

+1
tttttttt

zzttttttttt

g

dd

+1

��

there are morphisms in red completing the diagram commutatively
in such a way that the front right triangle is exact.
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Triangulated functors

Definition
A triangulated functor

(F , φ) : (T,Σ,4) −→ (T′,Σ′,4′)

consists of an additive functor F : T→ T′ together with a natural
isomorphism φ : FΣ ∼= Σ′F such that for any exact triangle in the
source

X f−→ Y i−→ C
q−→ ΣX

the image triangle

F (X )
F (f )−→ F (Y )

F (i)−→ F (C)
φ(X)F (q)−→ Σ′F (X )

is exact in the target.
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Triangulated categories

Remark
There is no known Puppe triangulated category which does not
satisfy the octahedral axiom.
Any triangulated structure on (T,Σ) induces a triangulated
structure on (Top,Σ−1).

The third object C in an exact triangle X f→ Y i→ C → ΣX, which
is called the mapping cone of f , is well defined by f up to
non-canonical isomorphism.

Definition
A full additive subcategory S ⊂ T is a triangulated subcategory if Σ
restricts to a self-equivalence in S and the mapping cone in T of any
morphism in S lies in S.

skip example
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Triangulated categories

Example
We can consider the following triangulated subcategories of K(A):

K+(A), formed by bounded below complexes,

· · · → 0 −→ Xn
d−→ Xn+1 → · · · .

K−(A), formed by bounded above complexes,

· · · → Xn−1
d−→ Xn −→ 0→ · · · .

Kb(A), formed by bounded complexes,

· · · → 0 −→ Xn → · · · → Xn+m −→ 0→ · · · .
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Verdier quotients

Definition
Let T be a triangulated category. We say that a triangulated
subcategory S ⊂ T is thick if it contains all the direct summands of its
objects.

The Verdier quotient T/S is a triangulated category equipped with a
triangulated functor

T −→ T/S

which is universal among those taking the objects in S to zero objects.

Example
The triangulated subcategory Ac(A) ⊂ K(A) formed by the complexes
X with trivial cohomology H∗(X ) = 0, called acyclic, is thick.
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Verdier quotients

Theorem
The functor

C(A)� K(A) −→ K(A)/Ac(A)

satisfies the universal property of the derived category, i.e.

D(A) = K(A)/Ac(A),

in particular the derived category is triangulated with the structure
defined above.

. . . and similarly for exact categories and DGAs (possibly with several
objects).
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Verdier quotients

The Verdier quotient T/S can be explicitly constructed as follows:
Objects in T/S are the same as in T.
A morphism in (T/S)(X ,Y ) is represented by a diagram in T

X f←− A
g−→ Y ,

where the mapping cone of f is in S.
Another such diagram

X f ′←− A′
g′−→ Y

represents the same morphism in T/S if there is a commutative
diagram in T,

A
f
yyrrrrrr g

%%LLLLLL

��

X Y

A′
f ′

eeKKKKKK g′

99ssssss
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Verdier quotients

The equivalence relation generated by the previous relation
defines morphism sets in T/S.
The composition of two morphisms in T/S in terms of
representatives is done as follows:

L
h′

%%KKKKKK
h
yyssssss

Af1
yyssssss g1

%%KKKKKK Bf2
yyssssss g2

%%KKKKKK

X Y Z

 

L
f1h

���������� g2h′

��
>>>>>>>

X Z

such that there is an exact triangle in T,

L
(−h

h′ )−→ A⊕ B
(g1 f2)−→ Y −→ ΣL.
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Verdier quotients

The suspension in T/S is defined by the suspension Σ in T on
objects and diagrams representing morphisms,

Σ(X f←− A
g−→ Y ) = ΣX Σf←− ΣA

Σg−→ ΣY .

The universal functor (F , φ) : T→ T/S is the identity on objects
F (X ) = X and it is defined on morphisms as follows:

F (f : X → Y ) = X 1X←− X f−→ Y .

The natural transformation φ : FΣ ∼= ΣF is the identity.

Exact triangles in T/S are defined so that they coincide with the
triangles isomorphic to the image of the exact triangles in T by the
universal triangulated functor T→ T/S. skip remark
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Verdier quotients

Remark
There are triangulated subcategories

Db(A) ⊂ D+(A),D−(A) ⊂ D(A)

as in the homotopy category.
A can be regarded as the full subcategory of complexes
concentrated in degree zero in D(A).
Given X and Y in A,

D(A)(X ,ΣnY ) =


ExtnA(X ,Y ), n ≥ 0;

0, n < 0.
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Cohomological functors

Definition
Let T be a triangulated category and A an abelian category. A functor
H : T→ A is cohomological if it takes an exact triangle in T,

X f−→ Y i−→ C
q−→ ΣX ,

to an exact sequence in A,

H(X )
H(f )−→ H(Y )

H(i)−→ H(C).
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Cohomological functors

Remark
Actually, H takes exact triangles to long exact sequences

· · · → H(X )
H(f )−→ H(Y )

H(i)−→ H(C)
H(q)−→ H(ΣX )

H(Σf )−→ H(ΣY )→ · · · .

The functors

H0 : K(A) −→ A, H0 : D(A) −→ A,

are cohomological.
For any object X in a triangulated category T, the representable
functor

T(X ,−) : T −→ Ab

is cohomological.
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Brown representability

Definition
Let T be a triangulated category with coproducts. An object X in T is
compact if T(X ,−) preserves coproducts.

T is compactly generated if there is a set S of compact objects such
that an object Y in T is trivial iff T(X ,Y ) = 0 for all X ∈ S.

Example (Neeman’96)
If X is a quasi-compact separated scheme then D(Qcoh(X )) is
compactly generated.

Theorem (Brown’62, Neeman’96)
If T is a compactly generated triangulated category, then any
cohomological functor preserving products H : Top → Ab is
representable H = T(−,Y ).
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Brown representability

Corollary
Let F : S→ T be a triangulated functor with compactly generated
source. If F preserves coproducts then it has a right adjoint.

Proof.
The right adjoint G must satisfy S(−,G(X )) = T(F (−),X ). This later
functor is well defined and representable by the previous theorem,
hence G exists.

Example (Grothendieck duality)
If f : X → Y is a separated morphism of quasi-compact separated
schemes, then the right derived functor of the direct image,

Rf∗ : D(Qcoh(X )) −→ D(Qcoh(Y )),

has a right adjoint. skip Adams
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Adams representability

Remark
If S ⊂ T is a triangulated subcategory. For any object X in T, the
restriction of a representable functor in T is cohomological in S,

T(X ,−)|S : S −→ Ab.

Theorem (Adams representability theorem, Neeman’97)
If T is compactly generated and card Tc is countable then:

1 Every cohomological functor H : (Tc)op → Ab is H = T(−,X )|S for
some X in T.

2 Any natural transformation T(−,X )|S ⇒ T(−,Y )|S is induced by a
morphism f : X → Y in T.

Remark
For instance, T = D(Z) or the stable homotopy category.

Fernando Muro Triangulated categories



Adams representability

Remark
If S ⊂ T is a triangulated subcategory. For any object X in T, the
restriction of a representable functor in T is cohomological in S,

T(X ,−)|S : S −→ Ab.

Theorem (Adams representability theorem, Neeman’97)
If T is compactly generated and card Tc is countable then:

1 Every cohomological functor H : (Tc)op → Ab is H = T(−,X )|S for
some X in T.

2 Any natural transformation T(−,X )|S ⇒ T(−,Y )|S is induced by a
morphism f : X → Y in T.

Remark
For instance, T = D(Z) or the stable homotopy category.

Fernando Muro Triangulated categories



Adams representability

Remark
If S ⊂ T is a triangulated subcategory. For any object X in T, the
restriction of a representable functor in T is cohomological in S,

T(X ,−)|S : S −→ Ab.

Theorem (Adams representability theorem, Neeman’97)
If T is compactly generated and card Tc is countable then:

1 Every cohomological functor H : (Tc)op → Ab is H = T(−,X )|S for
some X in T.

2 Any natural transformation T(−,X )|S ⇒ T(−,Y )|S is induced by a
morphism f : X → Y in T.

Remark
For instance, T = D(Z) or the stable homotopy category.

Fernando Muro Triangulated categories



Adams representability

Remark
If S ⊂ T is a triangulated subcategory. For any object X in T, the
restriction of a representable functor in T is cohomological in S,

T(X ,−)|S : S −→ Ab.

Theorem (Adams representability theorem, Neeman’97)
If T is compactly generated and card Tc is countable then:

1 Every cohomological functor H : (Tc)op → Ab is H = T(−,X )|S for
some X in T.

2 Any natural transformation T(−,X )|S ⇒ T(−,Y )|S is induced by a
morphism f : X → Y in T.

Remark
For instance, T = D(Z) or the stable homotopy category.

Fernando Muro Triangulated categories



Adams representability

Remark
If S ⊂ T is a triangulated subcategory. For any object X in T, the
restriction of a representable functor in T is cohomological in S,

T(X ,−)|S : S −→ Ab.

Theorem (Adams representability theorem, Neeman’97)
If T is compactly generated and card Tc is countable then:

1 Every cohomological functor H : (Tc)op → Ab is H = T(−,X )|S for
some X in T.

2 Any natural transformation T(−,X )|S ⇒ T(−,Y )|S is induced by a
morphism f : X → Y in T.

Remark
For instance, T = D(Z) or the stable homotopy category.

Fernando Muro Triangulated categories



Adams representability

Theorem (Neeman’97)
The Adams representability theorem holds in T iff the pure global
dimension of Mod-Tc is ≤ 1.

Example (Christensen-Keller-Neeman’01)
For T = D(C[x , y ]), part 1 of Adams representability theorem holds
under the continuum hypothesis.

[Beligiannis’00] computed using [Baer-Brune-Lenzing’82] the pure
global dimension of Mod-D(Λ)c for Λ a finite dimensional hereditary
algebra over an algebraically closed field k . It depends on the
representation type of Λ and on card k .

skip derived functors
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Derived functors

An additive functor F : A→ B induces an obvious triangulated functor

F : K(A)→ K(B).

If F is exact then it also induces a functor at the level of derived
categories,

Ac(A) � � //

F
��

K(A) // //

F
��

D(A)

F
��

Ac(B) � � // K(B) // // D(B)

Question: What can we do if F is not exact?
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Derived functors

Proposition
If A has enough projectives then the following composite is a
triangulated equivalence

ϕ : K−(Proj(A))
incl.−→ K−(A) −→ D−(A).

Definition
The left derived functor of an additive functor F : A→ B is the
composite

LF : D−(A)
ϕ−1

−→ K−(Proj(A)) ⊂ K−(A)
F−→ K−(B) −→ D−(B)

Remark
The usual left derived functors LnF : A→ B are recovered as

LnF (M) = H−nLF (M), M in A,n ≥ 0.
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Derived functors

Proposition
If A has enough injectives then the following composite is a
triangulated equivalence

ψ : K+(Inj(A))
incl.−→ K+(A) −→ D+(A).

Definition
The right derived functor of an additive functor F : A→ B is the
composite

RF : D+(A)
ψ−1

−→ K+(Inj(A)) ⊂ K+(A)
F−→ K+(B) −→ D+(B)

Remark
The usual right derived functors RnF : A→ B are recovered as

RnF (M) = HnRF (M), M in A,n ≥ 0.
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Derived functors

Suppose that A has exact coproducts and a projective generator P,
e.g. A = Mod-R and P = R. Let P ⊂ K(A) the smallest triangulated
subcategory with coproducts containing P.

Theorem
The composite

ϕ̄ : P incl.−→ K(A) −→ D(A)

is a triangulated equivalence.

Definition
The left derived functor of an additive functor F : A→ B is the
composite

LF : D(A)
ϕ̄−1

−→ P ⊂ K(A)
F−→ K(B) −→ D(B)
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Derived functors

Suppose that A has exact products and an injective cogenerator I,
e.g. A = Mod-R and I = HomZ(R,Q/Z). Let I ⊂ K(A) be the smallest
triangulated subcategory with products containing I.

Theorem
The composite

ψ̄ : I incl.−→ K(A) −→ D(A)

is a triangulated equivalence.

Definition
The right derived functor of an additive functor F : A→ B is the
composite

RF : D(A)
ψ̄−1

−→ I ⊂ K(A)
F−→ K(B) −→ D(B)
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Algebraic triangulated categories

Theorem
With the suspension of complexes and the exact triangles indicated
above, the homotopy category K(A) of an additive category A is a
triangulated category.

Remark
The same result holds for differential graded algebras (possibly with
several objects).

Definition (Keller, Krause)
A triangulated category is algebraic if it is triangulated equivalent to a
triangulated subcategory of K(A) for some additive category A.
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triangulated subcategory of K(A) for some additive category A.
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Algebraic triangulated categories

Proposition
Let X be an object in an algebraic triangulated category T and let

X n·1X−→ X −→ X/n −→ ΣX

be an exact triangle, n ∈ Z. Then

n · 1X/n = 0 : X/n −→ X/n.

Proof.
We can directly suppose T = K(A). If we take X/n to be the mapping
cone of n · 1X : X → X then it is easy to check that
n · 1X/n : X/n→ X/n in C(A) is nullhomotopic.
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Stable categories

Definition
An abelian category A is Frobenius if it has enough injectives and
projectives, and injective and projective objects coincide.

Example
Mod-R for R a quasi-Frobenius ring, i.e. R is right noetherian and
right self-injective.
Also mod-R, the full subcategory of finitely presented modules.
Examples of quasi-Frobenius rings are fields, division algebras,
Z/n, k [X ]/(f ), and the group algebra kG of a finite group G.
mod-T, where T is a triangulated category.
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Stable categories

Definition
The stable category A of a Frobenius abelian category A is the
quotient of A by the ideal of morphisms f : X → Y which factor through
an injective-projective object f : X → I → Y.

The cosyzygy SX of an object X in A is the cokernel of a
monomorphism of X into an injective-projective object,

X ↪→ I � SX .

The choice of such short exact sequences defines a self-equivalence,

S : A '−→ A.
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Stable categories

Definition
Given a morphism f : X → Y in A we say that the subdiagram in red

X
f //

� _

��

push

Y

i
�� 0

��

I //

-- --

Cf
q

!!BBBBBBBB

SX

is an exact triangle when projected to A.

Theorem
The stable category A of a Frobenius abelian category A is
triangulated with the structure above.
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Stable categories

Example
Taking 0-cocycles defines a triangulated equivalence

Z 0 : Ac(Proj(A))
'−→ A.

If R is a quasi-Frobenius ring then the composite

mod-R −→ Db(mod-R) −→ Db(mod-R)/Db(proj-R)

induces a triangulated equivalence

mod-R '−→ Db(mod-R)/Db(proj-R).

This last category is called in general the derived category of
singularities Dsg(R), which is trivial if R has finite homological
dimension, in particular if R is a commutative noetherian regular
ring.
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The ‘moduli space’ of triangulated structures

Let (T,Σ) be a small suspended category such that mod-T is
Frobenius abelian.

The suspension functor extends as follows,

T � � Yoneda //

Σ

��

mod-T

Σexact
��

projection
// // mod-T

(Σ,σ)triangulated
��

T � � Yoneda // mod-T
projection

// // mod-T

Theorem (Heller’68)
If T is idempontent complete, the Puppe triangulated structures on
(T,Σ) are in bijection with the natural isomorphisms θ : Σ3 ∼= S such
that

θΣ + σ(Σθ) = 0. skip example
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The ‘moduli space’ of triangulated structures

Example
Consider the suspended category (T,Σ) = (mod-k , identity), k a field.
In this case mod-T = mod-k and mod-k = 0 is trivial, hence (T,Σ) has
a unique Puppe triangulated structure.

As one can easily check, a triangle in mod-k

X // Y

��~~~~~

C

__@@@@@

is exact iff it is contractible, and T satisfies the octahedral axiom.

It is algebraic, actually there is a triangulated equivalence

mod-k '−→ mod-k [X ]/(X 2)

since any k [X ]/(X 2)-module is of the form (k [X ]/(X 2))p ⊕ kq.
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An exotic triangulated category

Example
Consider the suspended category (T,Σ) = (proj-Z/4, identity).

In this case mod-T = mod-Z/4. Moreover, any Z/4-module is of the
form (Z/4)p ⊕ (Z/2)q therefore

mod-Z/2 '−→ mod-Z/4.

If θ : Σ3 ∼= S is the identity natural isomorphism, then the equation in
Heller’s theorem reduces in this case to

1 + 1 = 0 ∈ Z/2,

so there is a unique Puppe triangulated structure on (T,Σ).
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An exotic triangulated category

Theorem (M-Schwede-Strickland’07)
The unique Puppe triangulated structure on proj-Z/4 with Σ = the
indentity satisfies the octahedral axiom.

The non-contractible triangle

Z/4 2 // Z/4

2||zzzzzzzz

Z/4
2

bbDDDDDDDD

is exact.

This triangulated category is neither algebraic nor topological.
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Topological triangulated categories

The Spanier-Whitehead category is the triangulated category SW
defined as:
Obj (X ,n), where X is a finite pointed CW -complex and n ∈ Z.

Map SW((X ,n), (Y ,m)) = lim
k→+∞

[Σk+nX ,Σk+mY ].

ΣX =

Shift Σ(X ,n) = (X ,n + 1) ∼= (ΣX ,n).
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Topological triangulated categories

4 Given a pointed map f : X → Y the mapping cone Cf is

= Cf .

There is a sequence of pointed maps,

X f−→ Y i−→ Cf
q−→ ΣX .

The prototype of exact triangle in SW is, n ∈ Z,

(X ,n)
f−→ (Y ,n)

i−→ (Cf ,n)
q−→ (ΣX ,n) ∼= Σ(X ,n).
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Topological triangulated categories

Example

If S = (S0,0) then there is an exact triangle in SW,

S
2·1S−→ S i−→ S/2

q−→ ΣS,

where S/2 = (RP2,−1). The map

0 6= 2 · 1S/2 : S/2 −→ S/2

is the composite
S/2

q−→ ΣS
η−→ S i−→ S/2,

where η is the stable Hopf map, which satisfies 2 · η = 0.

Corollary
SW is not algebraic.
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Topological triangulated categories

Proposition (Schwede-Shipley’02)
SW is the ‘free topological triangulated category’ on one generator S.
In particular if X is an object in a topological triangulated category T
then there is an exact functor

F : SW −→ T

with F (S) = X.

Remark
Similarly, Db(Z) is the ‘free algebraic triangulated category’ on one
generator Z.
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Topological triangulated categories

We stated above:

Theorem
The unique triangulated structure on proj-Z/4 with Σ = the indentity is
not topological.

Proof.
Assume it is topological. Let F : SW→ proj-Z/4 be an exact functor as
above for X = Z/4. By the previous example, since X/2 = X in
proj-Z/4,

2 · 1Z/4 = 2 · F (iηq) = F (i)F (2 · η)F (q) = 0,

and this is obviously not true.
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An exotic triangulated category

Remark
There are many different kinds of models for triangulated categories:

Stable model categories.
Stable homotopy categories [Heller’88].
Triangulated derivators [Grothendieck’90].
Stable∞-categories [Lurie’06].

In all these cases the ‘free model in one generator’ is associated to the
triangulated category SW, therefore the exotic triangulated catgory
proj-Z/4 does not admit any of these kinds of models.

Moreover, it can neither be obtained out of a triangulated 2-category
[Baues-M’08].
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