Fernando Muro

Universidad de Sevilla Deptartamento de Álgebra

Advanced School on Homotopy Theory and Algebraic Geometry Seville, September 2009

くロト (過) (目) (日)

ъ

Let **A** be an abelian category, e.g. $\mathbf{A} = \text{Mod-}R$, right modules over a ring R.

The category C(A) of complexes in A,

$$X = \{ \cdots \to X_{n-1} \xrightarrow{d} X_n \xrightarrow{d} X_{n+1} \to \cdots \} \quad (d^2 = 0),$$

is also abelian.

Definition

A morphism $f: X \xrightarrow{\sim} Y$ in **C**(**A**) is a quasi-isomorphism if it induces isomorphisms in cohomology,

$$H^n(f)\colon H^n(X)\stackrel{\cong}{\longrightarrow} H^n(Y), \quad n\in\mathbb{Z}.$$

ヘロン 人間 とくほ とくほ とう

Let **A** be an abelian category, e.g. $\mathbf{A} = \text{Mod-}R$, right modules over a ring R.

The category C(A) of complexes in A,

$$X = \{ \cdots \to X_{n-1} \xrightarrow{d} X_n \xrightarrow{d} X_{n+1} \to \cdots \} \quad (d^2 = 0),$$

is also abelian.

Definition

A morphism $f: X \xrightarrow{\sim} Y$ in **C**(**A**) is a quasi-isomorphism if it induces isomorphisms in cohomology,

$$H^n(f)\colon H^n(X) \stackrel{\cong}{\longrightarrow} H^n(Y), \quad n \in \mathbb{Z}.$$

くロト (過) (目) (日)

ъ

Example

If *P* and *I* are a projective and an injective resolution of *M* in **A**, respectively, then we have quasi-isomorphisms,

▶ ▲ 国 ▶ ▲ 国 ▶ …

Definition

The derived category D(A) is a category equipped with a functor

 $p \colon \mathbf{C}(\mathbf{A}) \longrightarrow \mathbf{D}(\mathbf{A})$

such that:

- p takes quasi-isomorphisms to isomorphisms,
- p is universal among the functors satisfying this property, i.e. if p': C(A) → B takes quasi-isomorphisms to isomorphisms then there exists a unique functor p'': D(A) → B such that p' = p''p,

イロト イポト イヨト イヨト

The derived category D(A) is a category equipped with a functor

 $p: \mathbf{C}(\mathbf{A}) \longrightarrow \mathbf{D}(\mathbf{A})$

such that:

- p takes quasi-isomorphisms to isomorphisms,
- p is universal among the functors satisfying this property, i.e. if p': C(A) → B takes quasi-isomorphisms to isomorphisms then there exists a unique functor p'': D(A) → B such that p' = p''p,

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

The derived category D(A) is a category equipped with a functor

 $p: \mathbf{C}(\mathbf{A}) \longrightarrow \mathbf{D}(\mathbf{A})$

such that:

- p takes quasi-isomorphisms to isomorphisms,
- p is universal among the functors satisfying this property, i.e. if p': C(A) → B takes quasi-isomorphisms to isomorphisms then there exists a unique functor p'': D(A) → B such that p' = p''p,

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

The derived category D(A) is a category equipped with a functor

 $p: \mathbf{C}(\mathbf{A}) \longrightarrow \mathbf{D}(\mathbf{A})$

such that:

- p takes quasi-isomorphisms to isomorphisms,
- *p* is universal among the functors satisfying this property, i.e. if *p*': C(A) → B takes quasi-isomorphisms to isomorphisms then there exists a unique functor p'': D(A) → B such that p' = p''p,

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Question: What's the algebraic structure of D(A)?

Answer: Triangulated category!

- The derived category need not exist [Freyd'64].
- If it exists then it is uniquely defined up to isomorphism.
- An object M in A becomes isomorphic to any projective resolution in D(A), and also to any injective resolution.
- The cohomology functor factors through the derived category,

Question: What's the algebraic structure of D(A)?

Answer: Triangulated category!

- The derived category need not exist [Freyd'64].
- If it exists then it is uniquely defined up to isomorphism.
- An object M in A becomes isomorphic to any projective resolution in D(A), and also to any injective resolution.
- The cohomology functor factors through the derived category,

Question: What's the algebraic structure of D(A)?

Answer: Triangulated category!

- The derived category need not exist [Freyd'64].
- If it exists then it is uniquely defined up to isomorphism.
- An object M in A becomes isomorphic to any projective resolution in D(A), and also to any injective resolution.
- The cohomology functor factors through the derived category,

Question: What's the algebraic structure of D(A)?

Answer: Triangulated category!

- The derived category need not exist [Freyd'64].
- If it exists then it is uniquely defined up to isomorphism.
- An object M in A becomes isomorphic to any projective resolution in D(A), and also to any injective resolution.
- The cohomology functor factors through the derived category,

Question: What's the algebraic structure of D(A)?

Answer: Triangulated category!

- The derived category need not exist [Freyd'64].
- If it exists then it is uniquely defined up to isomorphism.
- An object M in A becomes isomorphic to any projective resolution in D(A), and also to any injective resolution.
- The cohomology functor factors through the derived category,

Question: What's the algebraic structure of D(A)?

Answer: Triangulated category!

- The derived category need not exist [Freyd'64].
- If it exists then it is uniquely defined up to isomorphism.
- An object M in A becomes isomorphic to any projective resolution in D(A), and also to any injective resolution.
- The cohomology functor factors through the derived category,

Example

• If k is a field, the previous cohomology functor

 $H^* \colon \mathbf{D}(\mathsf{Mod}\text{-}k) \stackrel{\simeq}{\longrightarrow} (\mathsf{Mod}\text{-}k)^{\mathbb{Z}}$

is an equivalence of categories.

 If R is a hereditary ring, such as Z, k[X], or the path algebra of a quiver, then the functor

 $H^*: \mathbf{D}(\mathsf{Mod}\text{-}R) \longrightarrow (\mathsf{Mod}\text{-}R)^{\mathbb{Z}}$

is full and induces a bijection on isomorphism classes of objects, but it is not an equivalence.

・ロト ・回ト ・ヨト ・ヨト

Example

If k is a field, the previous cohomology functor

 $H^* \colon \mathbf{D}(\mathsf{Mod}\text{-}k) \stackrel{\simeq}{\longrightarrow} (\mathsf{Mod}\text{-}k)^{\mathbb{Z}}$

is an equivalence of categories.

 If R is a hereditary ring, such as Z, k[X], or the path algebra of a quiver, then the functor

$$H^* : \mathbf{D}(\mathsf{Mod}\text{-}R) \longrightarrow (\mathsf{Mod}\text{-}R)^{\mathbb{Z}}$$

is full and induces a bijection on isomorphism classes of objects, but it is not an equivalence.

ヘロト ヘ戸ト ヘヨト ヘヨト

Remark

 One can similarly define the derived category D(E) of an exact category E ⊂ A, in this case cohomology is a functor

$$H^* \colon \mathbf{C}(\mathbf{E}) \longrightarrow \mathbf{A}^{\mathbb{Z}}.$$

 One can also define the derived category of a differential graded algebra A, denoted by D(A), replacing the category of complexes with Mod-A, for which the cohomology functor is

 $H^*: \operatorname{Mod} A \longrightarrow \operatorname{Mod} H^*(A).$

• One can more generally consider differential graded categories, a.k.a. DGAs with several objects.

1000 1 1 2 1 1 2 1

Remark

 One can similarly define the derived category D(E) of an exact category E ⊂ A, in this case cohomology is a functor

$$H^*: \mathbf{C}(\mathbf{E}) \longrightarrow \mathbf{A}^{\mathbb{Z}}.$$

 One can also define the derived category of a differential graded algebra A, denoted by D(A), replacing the category of complexes with Mod-A, for which the cohomology functor is

 $H^*: \operatorname{Mod} A \longrightarrow \operatorname{Mod} H^*(A).$

• One can more generally consider differential graded categories, a.k.a. DGAs with several objects.

Remark

 One can similarly define the derived category D(E) of an exact category E ⊂ A, in this case cohomology is a functor

$$H^*: \mathbf{C}(\mathbf{E}) \longrightarrow \mathbf{A}^{\mathbb{Z}}.$$

 One can also define the derived category of a differential graded algebra A, denoted by D(A), replacing the category of complexes with Mod-A, for which the cohomology functor is

 $H^*: \operatorname{Mod} A \longrightarrow \operatorname{Mod} H^*(A).$

• One can more generally consider differential graded categories, a.k.a. DGAs with several objects.

The homotopy category

Definition

A morphism $f: X \to Y$ in C(A) is nullhomotopic $f \simeq 0$ if there exist morphisms, called the homotopy,

$$h: X_n \longrightarrow Y_{n-1}, \quad n \in \mathbb{Z},$$

such that

$$f = hd + dh$$
.

The homotopy category K(A) is the quotient of C(A) by the ideal of nullhomotopic morphisms.

Two morphisms $f, g: X \to Y$ in **C**(**A**) are homotopic $f \simeq g$ if f - g is nullhomotopic.

ヘロト 人間 ト ヘヨト ヘヨト

The homotopy category

Definition

A morphism $f: X \to Y$ in C(A) is nullhomotopic $f \simeq 0$ if there exist morphisms, called the homotopy,

$$h: X_n \longrightarrow Y_{n-1}, \quad n \in \mathbb{Z},$$

such that

$$f = hd + dh$$
.

The homotopy category K(A) is the quotient of C(A) by the ideal of nullhomotopic morphisms.

Two morphisms $f, g: X \to Y$ in C(A) are homotopic $f \simeq g$ if f - g is nullhomotopic.

ヘロン 人間 とくほ とくほ とう

3

The homotopy category

Definition

A morphism $f: X \to Y$ in C(A) is nullhomotopic $f \simeq 0$ if there exist morphisms, called the homotopy,

$$h: X_n \longrightarrow Y_{n-1}, \quad n \in \mathbb{Z},$$

such that

$$f = hd + dh$$
.

The homotopy category K(A) is the quotient of C(A) by the ideal of nullhomotopic morphisms.

Two morphisms $f, g: X \to Y$ in C(A) are homotopic $f \simeq g$ if f - g is nullhomotopic.

ヘロト 人間 とくほとくほとう

ъ

The homotopy category approaches the derived category.

Proposition

Two homotopic morphisms in C(A) map to the same morphism in the derived category D(A). In particular there is a factorization

The algebraic structure of K(A) is also that of a triangulated category. We will construct D(A) from K(A).

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

The homotopy category approaches the derived category.

Proposition

Two homotopic morphisms in C(A) map to the same morphism in the derived category D(A). In particular there is a factorization

The algebraic structure of K(A) is also that of a triangulated category. We will construct D(A) from K(A).

・ロト ・聞 と ・ ヨ と ・ ヨ と …

ъ

The homotopy category approaches the derived category.

Proposition

Two homotopic morphisms in C(A) map to the same morphism in the derived category D(A). In particular there is a factorization

The algebraic structure of K(A) is also that of a triangulated category. We will construct D(A) from K(A).

・ロン・(理)・ ・ ヨン・

ъ

Definition

The mapping cone of a morphism $f: X \to Y$ in C(A) is the complex C_f with

$$(C_f)_n = Y_n \oplus X_{n+1}$$

and differential

$$d_{C_f}: (C_f)_{n-1} = Y_{n-1} \oplus X_n \stackrel{\begin{pmatrix} d_Y & f \\ 0 & -d_X \end{pmatrix}}{\longrightarrow} Y_n \oplus X_{n+1} = (C_f)_n.$$

The suspension or shift ΣX of X in **C**(**A**) is the mapping cone of the trivial morphism $0 \to X$, i.e. $(\Sigma X)_n = X_{n+1}$, $d_{\Sigma X} = -d_X$.

The obvious sequence of morphisms in C(A),

$$X \xrightarrow{f} Y \xrightarrow{i} C_f \xrightarrow{q} \Sigma X,$$

is called an exact triangle when mapped to K(A) or D(A).

Definition

The mapping cone of a morphism $f: X \to Y$ in C(A) is the complex C_f with

$$(C_f)_n = Y_n \oplus X_{n+1}$$

and differential

$$d_{C_f}: (C_f)_{n-1} = Y_{n-1} \oplus X_n \stackrel{\binom{d_Y f}{0-d_X}}{\longrightarrow} Y_n \oplus X_{n+1} = (C_f)_n.$$

The suspension or shift ΣX of X in C(A) is the mapping cone of the trivial morphism $0 \to X$, i.e. $(\Sigma X)_n = X_{n+1}$, $d_{\Sigma X} = -d_X$.

The obvious sequence of morphisms in C(A),

$$X \stackrel{f}{\to} Y \stackrel{i}{\to} C_f \stackrel{q}{\to} \Sigma X,$$

is called an exact triangle when mapped to K(A) or D(A).

Definition

The mapping cone of a morphism $f: X \to Y$ in C(A) is the complex C_f with

$$(C_f)_n = Y_n \oplus X_{n+1}$$

and differential

$$d_{C_f}: (C_f)_{n-1} = Y_{n-1} \oplus X_n \stackrel{\begin{pmatrix} d_Y & f \\ 0 & -d_X \end{pmatrix}}{\longrightarrow} Y_n \oplus X_{n+1} = (C_f)_n.$$

The suspension or shift ΣX of X in **C**(**A**) is the mapping cone of the trivial morphism $0 \to X$, i.e. $(\Sigma X)_n = X_{n+1}$, $d_{\Sigma X} = -d_X$.

The obvious sequence of morphisms in C(A),

$$X \xrightarrow{f} Y \xrightarrow{i} C_f \xrightarrow{q} \Sigma X,$$

is called an exact triangle when mapped to K(A) or D(A).

Question: Where do short exact sequences in C(A) go in D(A)?

Proposition

Given a short exact sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ in **C**(**A**) there is a quasi-isomorphism $C_f \xrightarrow{\sim} Z$ defined by

$$(C_f)_n = Y_n \oplus X_{n+1} \xrightarrow{\binom{g}{0}} Z_n, \quad n \in \mathbb{Z},$$

and the following diagram commutes in C(A),

ヘロト ヘアト ヘビト ヘビト

Question: Where do short exact sequences in C(A) go in D(A)?

Proposition

Given a short exact sequence $X \stackrel{f}{\hookrightarrow} Y \stackrel{g}{\twoheadrightarrow} Z$ in **C**(**A**) there is a quasi-isomorphism $C_f \stackrel{\sim}{\to} Z$ defined by

$$(C_f)_n = Y_n \oplus X_{n+1} \xrightarrow{\binom{g}{0}} Z_n, \quad n \in \mathbb{Z},$$

and the following diagram commutes in C(A),

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

Definition

A suspended category is a pair (\mathbf{T}, Σ) given by:

- An additive category **T**.
- A self-equivalence $\Sigma : \mathbf{T} \xrightarrow{\simeq} \mathbf{T}$ called suspension or shift.

A triangle in (\mathbf{T}, Σ) is a diagram of the form

$$X \xrightarrow{f} Y \xrightarrow{i} C \xrightarrow{q} \Sigma X.$$

Here f is called the base. This diagram can also be depicted as

Definition

A suspended category is a pair (\mathbf{T}, Σ) given by:

- An additive category **T**.
- A self-equivalence $\Sigma : \mathbf{T} \xrightarrow{\simeq} \mathbf{T}$ called suspension or shift.

A triangle in (\mathbf{T}, Σ) is a diagram of the form

$$X \stackrel{f}{\longrightarrow} Y \stackrel{i}{\longrightarrow} C \stackrel{q}{\longrightarrow} \Sigma X.$$

Here f is called the base. This diagram can also be depicted as

-2

Definition

A suspended category is a pair (\mathbf{T}, Σ) given by:

- An additive category **T**.
- A self-equivalence $\Sigma : \mathbf{T} \xrightarrow{\simeq} \mathbf{T}$ called suspension or shift.

A triangle in (\mathbf{T}, Σ) is a diagram of the form

$$X \stackrel{f}{\longrightarrow} Y \stackrel{i}{\longrightarrow} C \stackrel{q}{\longrightarrow} \Sigma X.$$

Here f is called the base. This diagram can also be depicted as

A morphism of triangles in (\mathbf{T}, Σ) is a commutative diagram

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} Y & \stackrel{i}{\longrightarrow} C & \stackrel{q}{\longrightarrow} \Sigma X \\ & & & \downarrow^{\beta} & & \downarrow^{\gamma} & & \downarrow^{\Sigma \alpha} \\ X' & \stackrel{f'}{\longrightarrow} Y' & \stackrel{i'}{\longrightarrow} C' & \stackrel{q'}{\longrightarrow} \Sigma X' \end{array}$$

ヘロン 人間 とくほ とくほ とう

■ のへの

Definition (Puppe, Verdier'60s)

A triangulated category is a triple $(\mathbf{T}, \Sigma, \triangle)$ consisting of a suspended category (\mathbf{T}, Σ) and a class of triangles \triangle , called exact triangles, satisfying the following four axioms:

TR1 The class \triangle is closed by isomorphisms, every morphism $f: X \rightarrow Y$ in **T** is the base of an exact triangle

$$X \stackrel{f}{\longrightarrow} Y \stackrel{i}{\longrightarrow} C \stackrel{q}{\longrightarrow} \Sigma X,$$

and the trivial triangle

$$X \xrightarrow{1_X} X \longrightarrow 0 \longrightarrow \Sigma X$$

is always exact.

くロト (過) (目) (日)

Definition (Puppe, Verdier'60s)

A triangulated category is a triple $(\mathbf{T}, \Sigma, \triangle)$ consisting of a suspended category (\mathbf{T}, Σ) and a class of triangles \triangle , called exact triangles, satisfying the following four axioms:

TR1 The class \triangle is closed by isomorphisms, every morphism $f: X \rightarrow Y$ in **T** is the base of an exact triangle

$$X \stackrel{f}{\longrightarrow} Y \stackrel{i}{\longrightarrow} C \stackrel{q}{\longrightarrow} \Sigma X,$$

and the trivial triangle

$$X \xrightarrow{1_X} X \longrightarrow 0 \longrightarrow \Sigma X$$

is always exact.

イロト イポト イヨト イヨト
TR2 A triangle

$$X \stackrel{f}{\longrightarrow} Y \stackrel{i}{\longrightarrow} C \stackrel{q}{\longrightarrow} \Sigma X$$

is exact if and only if its translation

$$Y \xrightarrow{i} C \xrightarrow{q} \Sigma X \xrightarrow{-\Sigma f} \Sigma Y$$

is exact.

ヘロト 人間 ト ヘヨト ヘヨト

2

Triangulated categories

Definition

TR3 Any commutative square between the bases of two exact triangles can be completed to a morphism of triangles

If $(\mathbf{T}, \Sigma, \triangle)$ satisfies just these three axioms we say that it is a Puppe triangulated category.

skip example

<ロ> (四) (四) (三) (三) (三) (三)

Triangulated categories

Definition

TR3 Any commutative square between the bases of two exact triangles can be completed to a morphism of triangles

If $(\mathbf{T}, \Sigma, \triangle)$ satisfies just these three axioms we say that it is a Puppe triangulated category.

イロト イポト イヨト イヨト 三日

Example (TR3 for K(A))

In the homotopy category K(A),

We choose representatives of these homotopy classes, that we denote by the same name.

Let $h: X_{n+1} \to Y'_n$, $n \in \mathbb{Z}$, be a homotopy $\beta f \simeq f' \alpha$. Define

$$\gamma \colon (C_f)_n = Y_n \oplus X_{n+1} \xrightarrow{\binom{\beta \ h}{0 \ \alpha}} Y'_n \oplus X'_{n+1} = (C_{f'})_n.$$

ヘロン 人間 とくほ とくほ とう

E 900

Example (TR3 for K(A))

In the homotopy category K(A),

We choose representatives of these homotopy classes, that we denote by the same name.

Let $h: X_{n+1} \to Y'_n$, $n \in \mathbb{Z}$, be a homotopy $\beta f \simeq f' \alpha$. Define

$$\gamma \colon (C_f)_n = Y_n \oplus X_{n+1} \stackrel{\binom{\beta \ h}{0 \ \alpha}}{\longrightarrow} Y'_n \oplus X'_{n+1} = (C_{f'})_n.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Example (TR3 for **K**(**A**))

In the homotopy category K(A),

$$\begin{array}{c} X \xrightarrow{f} Y \xrightarrow{i} C_{f} \xrightarrow{q} \Sigma X \\ \downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma} \qquad \downarrow^{\Sigma \alpha} \\ X' \xrightarrow{f'} Y' \xrightarrow{i'} C_{f'} \xrightarrow{q'} \Sigma X' \end{array}$$

We choose representatives of these homotopy classes, that we denote by the same name.

Let $h: X_{n+1} \to Y'_n$, $n \in \mathbb{Z}$, be a homotopy $\beta f \simeq f' \alpha$. Define

$$\boldsymbol{\gamma}\colon (C_f)_n=Y_n\oplus X_{n+1}\stackrel{\binom{\beta}{0}\stackrel{h}{\alpha}}{\longrightarrow}Y'_n\oplus X'_{n+1}=(C_{f'})_n.$$

ヘロト 人間 ト ヘヨト ヘヨト

Definition (Verdier's octahedral axiom)

TR4 Given two composable morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in **T**, and three exact triangles with bases *f*, *g* and *gf*,

there are morphisms in red completing the diagram commutatively in such a way that the front right triangle is exact.

A triangulated functor

$$(F,\phi)\colon (\mathbf{T},\Sigma,\bigtriangleup) \longrightarrow (\mathbf{T}',\Sigma',\bigtriangleup')$$

consists of an additive functor $F : \mathbf{T} \to \mathbf{T}'$ together with a natural isomorphism $\phi : F\Sigma \cong \Sigma'F$ such that for any exact triangle in the source

$$X \stackrel{f}{\longrightarrow} Y \stackrel{i}{\longrightarrow} C \stackrel{q}{\longrightarrow} \Sigma X$$

the image triangle

$$F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(i)} F(C) \xrightarrow{\phi(X)F(q)} \Sigma'F(X)$$

is exact in the target.

ヘロト 人間 ト ヘヨト ヘヨト

Triangulated categories

Remark

- There is no known Puppe triangulated category which does not satisfy the octahedral axiom.
- Any triangulated structure on (T, Σ) induces a triangulated structure on (T^{op}, Σ⁻¹).
- The third object C in an exact triangle X → Y → C → ΣX, which is called the mapping cone of f, is well defined by f up to non-canonical isomorphism.

Definition

A full additive subcategory $S \subset T$ is a triangulated subcategory if Σ restricts to a self-equivalence in S and the mapping cone in T of any morphism in S lies in S.

イロン イロン イヨン イヨン

Triangulated categories

Remark

- There is no known Puppe triangulated category which does not satisfy the octahedral axiom.
- Any triangulated structure on (T, Σ) induces a triangulated structure on (T^{op}, Σ⁻¹).
- The third object C in an exact triangle X → Y → C → ΣX, which is called the mapping cone of f, is well defined by f up to non-canonical isomorphism.

Definition

A full additive subcategory $S \subset T$ is a triangulated subcategory if Σ restricts to a self-equivalence in S and the mapping cone in T of any morphism in S lies in S.

イロン イロン イヨン イヨン

Remark

- There is no known Puppe triangulated category which does not satisfy the octahedral axiom.
- Any triangulated structure on (T, Σ) induces a triangulated structure on (T^{op}, Σ⁻¹).
- The third object C in an exact triangle X → Y → C → ΣX, which is called the mapping cone of f, is well defined by f up to non-canonical isomorphism.

Definition

A full additive subcategory $S \subset T$ is a triangulated subcategory if Σ restricts to a self-equivalence in S and the mapping cone in T of any morphism in S lies in S.

◆□ > ◆□ > ◆豆 > ◆豆 > -

Remark

- There is no known Puppe triangulated category which does not satisfy the octahedral axiom.
- Any triangulated structure on (T, Σ) induces a triangulated structure on (T^{op}, Σ⁻¹).
- The third object C in an exact triangle X → Y → C → ΣX, which is called the mapping cone of f, is well defined by f up to non-canonical isomorphism.

Definition

A full additive subcategory $S \subset T$ is a triangulated subcategory if Σ restricts to a self-equivalence in S and the mapping cone in T of any morphism in S lies in S.

・ロト ・ 理 ト ・ ヨ ト ・

Example

We can consider the following triangulated subcategories of K(A):

• K⁺(A), formed by bounded below complexes,

$$\cdots \rightarrow 0 \longrightarrow X_n \xrightarrow{d} X_{n+1} \rightarrow \cdots$$

• K⁻(A), formed by bounded above complexes,

$$\cdots \rightarrow X_{n-1} \xrightarrow{d} X_n \longrightarrow 0 \rightarrow \cdots$$

• K^b(A), formed by bounded complexes,

$$\cdots
ightarrow 0 \longrightarrow X_n
ightarrow \cdots
ightarrow X_{n+m} \longrightarrow 0
ightarrow \cdots$$

ヘロト ヘアト ヘビト ヘビト

Let **T** be a triangulated category. We say that a triangulated subcategory $S \subset T$ is thick if it contains all the direct summands of its objects.

The Verdier quotient **T**/**S** is a triangulated category equipped with a triangulated functor

 $\textbf{T} \longrightarrow \textbf{T}/\textbf{S}$

which is universal among those taking the objects in S to zero objects.

Example

The triangulated subcategory $Ac(A) \subset K(A)$ formed by the complexes *X* with trivial cohomology $H^*(X) = 0$, called acyclic, is thick.

(日) (四) (日) (日) (日)

Let **T** be a triangulated category. We say that a triangulated subcategory $\mathbf{S} \subset \mathbf{T}$ is thick if it contains all the direct summands of its objects.

The Verdier quotient T/S is a triangulated category equipped with a triangulated functor

$$\mathbf{T} \longrightarrow \mathbf{T}/\mathbf{S}$$

which is universal among those taking the objects in S to zero objects.

Example

The triangulated subcategory $Ac(A) \subset K(A)$ formed by the complexes *X* with trivial cohomology $H^*(X) = 0$, called acyclic, is thick.

イロン イロン イヨン イヨン

Let **T** be a triangulated category. We say that a triangulated subcategory $S \subset T$ is thick if it contains all the direct summands of its objects.

The Verdier quotient T/S is a triangulated category equipped with a triangulated functor

$$\mathbf{T} \longrightarrow \mathbf{T}/\mathbf{S}$$

which is universal among those taking the objects in S to zero objects.

Example

The triangulated subcategory $Ac(A) \subset K(A)$ formed by the complexes *X* with trivial cohomology $H^*(X) = 0$, called acyclic, is thick.

・ロン・西方・ ・ ヨン・ ヨン・

Theorem

The functor

$$C(A) \twoheadrightarrow K(A) \longrightarrow K(A)/Ac(A)$$

satisfies the universal property of the derived category, i.e.

 $\mathbf{D}(\mathbf{A})=\mathbf{K}(\mathbf{A})/\mathbf{A}\mathbf{c}(\mathbf{A}),$

in particular the derived category is triangulated with the structure defined above.

... and similarly for exact categories and DGAs (possibly with several objects).

ヘロト ヘアト ヘビト ヘビト

The Verdier quotient T/S can be explicitly constructed as follows:

• Objects in **T**/**S** are the same as in **T**.

• A morphism in $(\mathbf{T}/\mathbf{S})(X, Y)$ is represented by a diagram in \mathbf{T}

$$X \xleftarrow{f} A \xrightarrow{g} Y,$$

where the mapping cone of *f* is in **S**.

• Another such diagram

$$X \xleftarrow{f'} A' \xrightarrow{g'} Y$$

represents the same morphism in T/S if there is a commutative diagram in T,

The Verdier quotient T/S can be explicitly constructed as follows:

- Objects in **T**/**S** are the same as in **T**.
- A morphism in $(\mathbf{T}/\mathbf{S})(X, Y)$ is represented by a diagram in \mathbf{T}

 $X \xleftarrow{f} A \xrightarrow{g} Y,$

where the mapping cone of *f* is in **S**.

• Another such diagram

$$X \xleftarrow{f'} A' \xrightarrow{g'} Y$$

represents the same morphism in \mathbf{T}/\mathbf{S} if there is a commutative diagram in \mathbf{T} ,

The Verdier quotient T/S can be explicitly constructed as follows:

- Objects in **T**/**S** are the same as in **T**.
- A morphism in $(\mathbf{T}/\mathbf{S})(X, Y)$ is represented by a diagram in \mathbf{T}

$$X \stackrel{f}{\longleftarrow} A \stackrel{g}{\longrightarrow} Y,$$

where the mapping cone of f is in S.

Another such diagram

$$X \xleftarrow{f'} A' \xrightarrow{g'} Y$$

represents the same morphism in T/S if there is a commutative diagram in T,

The Verdier quotient T/S can be explicitly constructed as follows:

- Objects in **T**/**S** are the same as in **T**.
- A morphism in $(\mathbf{T}/\mathbf{S})(X, Y)$ is represented by a diagram in \mathbf{T}

$$X \stackrel{f}{\longleftarrow} A \stackrel{g}{\longrightarrow} Y,$$

where the mapping cone of *f* is in **S**.

Another such diagram

$$X \xleftarrow{f'} A' \xrightarrow{g'} Y$$

represents the same morphism in T/S if there is a commutative diagram in T,

- The equivalence relation generated by the previous relation defines morphism sets in **T**/**S**.
- The composition of two morphisms in T/S in terms of representatives is done as follows:

such that there is an exact triangle in T,

$$L \xrightarrow{\binom{-h}{h'}} A \oplus B \xrightarrow{(g_1 \ f_2)} Y \longrightarrow \Sigma L$$

 The suspension in T/S is defined by the suspension Σ in T on objects and diagrams representing morphisms,

$$\Sigma(X \xleftarrow{f} A \xrightarrow{g} Y) = \Sigma X \xleftarrow{\Sigma f} \Sigma A \xrightarrow{\Sigma g} \Sigma Y.$$

• The universal functor (F, ϕ) : $\mathbf{T} \to \mathbf{T}/\mathbf{S}$ is the identity on objects F(X) = X and it is defined on morphisms as follows:

$$F(f\colon X\to Y)=X\xleftarrow{1_X} X\xrightarrow{f} Y.$$

- The natural transformation ϕ : $F\Sigma \cong \Sigma F$ is the identity.
- Exact triangles in T/S are defined so that they coincide with the triangles isomorphic to the image of the exact triangles in T by the universal triangulated functor $T \to T/S$. skip remark

・ロト ・回ト ・ヨト ・ヨト

 The suspension in T/S is defined by the suspension Σ in T on objects and diagrams representing morphisms,

$$\Sigma(X \xleftarrow{f} A \xrightarrow{g} Y) = \Sigma X \xleftarrow{\Sigma f} \Sigma A \xrightarrow{\Sigma g} \Sigma Y.$$

• The universal functor (F, ϕ) : $\mathbf{T} \to \mathbf{T}/\mathbf{S}$ is the identity on objects F(X) = X and it is defined on morphisms as follows:

$$F(f\colon X\to Y)=X\xleftarrow{1_X} X\xrightarrow{f} Y.$$

- The natural transformation ϕ : $F\Sigma \cong \Sigma F$ is the identity.
- Exact triangles in T/S are defined so that they coincide with the triangles isomorphic to the image of the exact triangles in T by the universal triangulated functor $T \to T/S$. skip remark

・ロト ・回ト ・ヨト ・ヨト

 The suspension in T/S is defined by the suspension Σ in T on objects and diagrams representing morphisms,

$$\Sigma(X \xleftarrow{f} A \xrightarrow{g} Y) = \Sigma X \xleftarrow{\Sigma f} \Sigma A \xrightarrow{\Sigma g} \Sigma Y.$$

• The universal functor (F, ϕ) : $\mathbf{T} \to \mathbf{T}/\mathbf{S}$ is the identity on objects F(X) = X and it is defined on morphisms as follows:

$$F(f\colon X\to Y)=X\xleftarrow{1_X} X\xrightarrow{f} Y.$$

- The natural transformation $\phi \colon F\Sigma \cong \Sigma F$ is the identity.
- Exact triangles in T/S are defined so that they coincide with the triangles isomorphic to the image of the exact triangles in T by the universal triangulated functor $T \to T/S$. skip remark

・ロト ・回ト ・ヨト ・ヨト

 The suspension in T/S is defined by the suspension Σ in T on objects and diagrams representing morphisms,

$$\Sigma(X \xleftarrow{f} A \xrightarrow{g} Y) = \Sigma X \xleftarrow{\Sigma f} \Sigma A \xrightarrow{\Sigma g} \Sigma Y.$$

• The universal functor (F, ϕ) : $\mathbf{T} \to \mathbf{T}/\mathbf{S}$ is the identity on objects F(X) = X and it is defined on morphisms as follows:

$$F(f\colon X\to Y)=X\xleftarrow{1_X} X\xrightarrow{f} Y.$$

- The natural transformation ϕ : $F\Sigma \cong \Sigma F$ is the identity.
- Exact triangles in T/S are defined so that they coincide with the triangles isomorphic to the image of the exact triangles in T by the universal triangulated functor $T \to T/S$. skip remark

(日)

Remark

• There are triangulated subcategories

$$\mathsf{D}^b(\mathsf{A})\subset\mathsf{D}^+(\mathsf{A}),\mathsf{D}^-(\mathsf{A})\subset\mathsf{D}(\mathsf{A})$$

as in the homotopy category.

 A can be regarded as the full subcategory of complexes concentrated in degree zero in D(A).

• Given X and Y in A,

$$\mathbf{D}(\mathbf{A})(X,\Sigma^nY) = \begin{cases} \mathsf{Ext}^n_{\mathbf{A}}(X,Y), & n \ge 0; \\ 0, & n < 0. \end{cases}$$

ヘロト ヘアト ヘビト ヘビト

Remark

• There are triangulated subcategories

$$\mathsf{D}^b(\mathsf{A})\subset\mathsf{D}^+(\mathsf{A}),\mathsf{D}^-(\mathsf{A})\subset\mathsf{D}(\mathsf{A})$$

as in the homotopy category.

• A can be regarded as the full subcategory of complexes concentrated in degree zero in D(A).

• Given X and Y in A,

$$\mathbf{D}(\mathbf{A})(X,\Sigma^nY) = \begin{cases} \mathsf{Ext}^n_{\mathbf{A}}(X,Y), & n \ge 0; \\ 0, & n < 0. \end{cases}$$

ヘロト ヘアト ヘビト ヘビト

Remark

• There are triangulated subcategories

$$\mathsf{D}^b(\mathsf{A})\subset\mathsf{D}^+(\mathsf{A}),\mathsf{D}^-(\mathsf{A})\subset\mathsf{D}(\mathsf{A})$$

as in the homotopy category.

• A can be regarded as the full subcategory of complexes concentrated in degree zero in D(A).

• Given X and Y in **A**,

$$\mathbf{D}(\mathbf{A})(X,\Sigma^nY) = \begin{cases} \mathsf{Ext}^n_{\mathbf{A}}(X,Y), & n \ge 0; \\ 0, & n < 0. \end{cases}$$

프 🕨 🗉 프

< □ > < 同 > < 三 > <

Let **T** be a triangulated category and **A** an abelian category. A functor $H: \mathbf{T} \rightarrow \mathbf{A}$ is cohomological if it takes an exact triangle in **T**,

$$X \stackrel{f}{\longrightarrow} Y \stackrel{i}{\longrightarrow} C \stackrel{q}{\longrightarrow} \Sigma X,$$

to an exact sequence in A,

$$H(X) \xrightarrow{H(f)} H(Y) \xrightarrow{H(i)} H(C).$$

く 同 と く ヨ と く ヨ と

Cohomological functors

Remark

Actually, H takes exact triangles to long exact sequences

$$\cdots \to H(X) \xrightarrow{H(f)} H(Y) \xrightarrow{H(i)} H(C) \xrightarrow{H(q)} H(\Sigma X) \xrightarrow{H(\Sigma f)} H(\Sigma Y) \to \cdots$$

• The functors

$$H^0 \colon \mathbf{K}(\mathbf{A}) \longrightarrow \mathbf{A}, \qquad H^0 \colon \mathbf{D}(\mathbf{A}) \longrightarrow \mathbf{A},$$

are cohomological.

 For any object X in a triangulated category T, the representable functor

$$\mathsf{T}(X,-)\colon\mathsf{T}\longrightarrow\mathsf{Ab}$$

is cohomological.

ヘロト 人間 とくほ とくほう

Cohomological functors

Remark

Actually, H takes exact triangles to long exact sequences

$$\cdots \to H(X) \xrightarrow{H(f)} H(Y) \xrightarrow{H(i)} H(C) \xrightarrow{H(q)} H(\Sigma X) \xrightarrow{H(\Sigma f)} H(\Sigma Y) \to \cdots$$

The functors

$$H^0$$
: $\mathbf{K}(\mathbf{A}) \longrightarrow \mathbf{A}, \qquad H^0$: $\mathbf{D}(\mathbf{A}) \longrightarrow \mathbf{A},$

are cohomological.

 For any object X in a triangulated category T, the representable functor

$$\mathsf{T}(X,-)\colon\mathsf{T}\longrightarrow\mathsf{Ab}$$

is cohomological.

ヘロン 人間 とくほ とくほう

Cohomological functors

Remark

Actually, H takes exact triangles to long exact sequences

$$\cdots \to H(X) \xrightarrow{H(f)} H(Y) \xrightarrow{H(i)} H(C) \xrightarrow{H(q)} H(\Sigma X) \xrightarrow{H(\Sigma f)} H(\Sigma Y) \to \cdots$$

• The functors

$$H^0\colon \mathbf{K}(\mathbf{A})\longrightarrow \mathbf{A}, \qquad H^0\colon \mathbf{D}(\mathbf{A})\longrightarrow \mathbf{A},$$

are cohomological.

• For any object X in a triangulated category **T**, the representable functor

$$T(X,-)$$
: $T \longrightarrow Ab$

is cohomological.

ヘロト 人間 とくほ とくほう

Let **T** be a triangulated category with coproducts. An object X in **T** is compact if T(X, -) preserves coproducts.

T is compactly generated if there is a set S of compact objects such that an object Y in **T** is trivial iff T(X, Y) = 0 for all $X \in S$.

Example (Neeman'96)

If X is a quasi-compact separated scheme then $D(\mathbf{Qcoh}(X))$ is compactly generated.

Theorem (Brown'62, Neeman'96)

If **T** is a compactly generated triangulated category, then any cohomological functor preserving products $H: \mathbf{T}^{op} \to \mathbf{Ab}$ is representable $H = \mathbf{T}(-, Y)$.

ヘロン 人間 とくほ とくほ とう

Let **T** be a triangulated category with coproducts. An object X in **T** is compact if T(X, -) preserves coproducts.

T is compactly generated if there is a set S of compact objects such that an object Y in **T** is trivial iff $\mathbf{T}(X, Y) = 0$ for all $X \in S$.

Example (Neeman'96)

If X is a quasi-compact separated scheme then $D(\mathbf{Qcoh}(X))$ is compactly generated.

Theorem (Brown'62, Neeman'96)

If **T** is a compactly generated triangulated category, then any cohomological functor preserving products $H: \mathbf{T}^{op} \to \mathbf{Ab}$ is representable $H = \mathbf{T}(-, Y)$.

ヘロン 人間 とくほ とくほ とう

Let **T** be a triangulated category with coproducts. An object X in **T** is compact if T(X, -) preserves coproducts.

T is compactly generated if there is a set S of compact objects such that an object Y in **T** is trivial iff $\mathbf{T}(X, Y) = 0$ for all $X \in S$.

Example (Neeman'96)

If X is a quasi-compact separated scheme then $D(\mathbf{Qcoh}(X))$ is compactly generated.

Theorem (Brown'62, Neeman'96)

If **T** is a compactly generated triangulated category, then any cohomological functor preserving products $H: \mathbf{T}^{op} \to \mathbf{Ab}$ is representable $H = \mathbf{T}(-, Y)$.

イロン 不得 とくほ とくほとう
Let **T** be a triangulated category with coproducts. An object X in **T** is compact if T(X, -) preserves coproducts.

T is compactly generated if there is a set S of compact objects such that an object Y in **T** is trivial iff $\mathbf{T}(X, Y) = 0$ for all $X \in S$.

Example (Neeman'96)

If X is a quasi-compact separated scheme then $D(\mathbf{Qcoh}(X))$ is compactly generated.

Theorem (Brown'62, Neeman'96)

If **T** is a compactly generated triangulated category, then any cohomological functor preserving products $H: \mathbf{T}^{op} \to \mathbf{Ab}$ is representable $H = \mathbf{T}(-, Y)$.

<ロ> (日) (日) (日) (日) (日)

Brown representability

Corollary

Let $F : \mathbf{S} \to \mathbf{T}$ be a triangulated functor with compactly generated source. If F preserves coproducts then it has a right adjoint.

Proof.

The right adjoint *G* must satisfy $\mathbf{S}(-, G(X)) = \mathbf{T}(F(-), X)$. This later functor is well defined and representable by the previous theorem, hence *G* exists.

Example (Grothendieck duality)

If $f: X \rightarrow Y$ is a separated morphism of quasi-compact separated schemes, then the right derived functor of the direct image,

$\mathbb{R}f_*\colon D(\mathsf{Qcoh}(X))\longrightarrow D(\mathsf{Qcoh}(Y)),$

has a right adjoint. • skip Adams

Brown representability

Corollary

Let $F : \mathbf{S} \to \mathbf{T}$ be a triangulated functor with compactly generated source. If F preserves coproducts then it has a right adjoint.

Proof.

The right adjoint *G* must satisfy $\mathbf{S}(-, G(X)) = \mathbf{T}(F(-), X)$. This later functor is well defined and representable by the previous theorem, hence *G* exists.

Example (Grothendieck duality)

If $f: X \to Y$ is a separated morphism of quasi-compact separated schemes, then the right derived functor of the direct image,

 $\mathbb{R}f_*\colon D(\mathsf{Qcoh}(X))\longrightarrow D(\mathsf{Qcoh}(Y)),$

has a right adjoint. • skip Adams

Corollary

Let $F : \mathbf{S} \to \mathbf{T}$ be a triangulated functor with compactly generated source. If F preserves coproducts then it has a right adjoint.

Proof.

The right adjoint *G* must satisfy $\mathbf{S}(-, G(X)) = \mathbf{T}(F(-), X)$. This later functor is well defined and representable by the previous theorem, hence *G* exists.

Example (Grothendieck duality)

If $f: X \to Y$ is a separated morphism of quasi-compact separated schemes, then the right derived functor of the direct image,

$$\mathbb{R}f_*\colon D(\operatorname{\mathbf{Qcoh}}(X))\longrightarrow D(\operatorname{\mathbf{Qcoh}}(Y)),$$

has a right adjoint. • skip Adams

Adams representability

Remark

If $S \subset T$ is a triangulated subcategory. For any object X in T, the restriction of a representable functor in T is cohomological in S,

 $\mathbf{T}(X,-)_{|\mathbf{S}}:\mathbf{S}\longrightarrow\mathbf{Ab}.$

Theorem (Adams representability theorem, Neeman'97)

If **T** is compactly generated and card **T**^c is countable then:

- Every cohomological functor $H: (\mathbf{T}^c)^{\mathrm{op}} \to \mathbf{Ab}$ is $H = \mathbf{T}(-, X)_{|\mathbf{S}|}$ for some X in \mathbf{T} .
- ② Any natural transformation T(−, X)_{|S} ⇒ T(−, Y)_{|S} is induced by a morphism f: X → Y in T.

Remark

Adams representability

Remark

If $S \subset T$ is a triangulated subcategory. For any object X in T, the restriction of a representable functor in T is cohomological in S,

 $\mathbf{T}(X,-)_{|\mathbf{S}}:\mathbf{S}\longrightarrow\mathbf{Ab}.$

Theorem (Adams representability theorem, Neeman'97)

If **T** is compactly generated and card T^c is countable then:

- Every cohomological functor H: (T^c)^{op} → Ab is H = T(-, X)_{|S} for some X in T.
- 2 Any natural transformation $T(-, X)_{|S} \Rightarrow T(-, Y)_{|S}$ is induced by a morphism $f: X \rightarrow Y$ in **T**.

Remark

Adams representability

Remark

If $S \subset T$ is a triangulated subcategory. For any object X in T, the restriction of a representable functor in T is cohomological in S,

 $\mathbf{T}(X,-)_{|\mathbf{S}}:\mathbf{S}\longrightarrow\mathbf{Ab}.$

Theorem (Adams representability theorem, Neeman'97)

If **T** is compactly generated and card **T**^c is countable then:

- Every cohomological functor $H: (\mathbf{T}^c)^{op} \to \mathbf{Ab}$ is $H = \mathbf{T}(-, X)_{|\mathbf{S}|}$ for some X in **T**.
- ② Any natural transformation T(−, X)_{|S} ⇒ T(−, Y)_{|S} is induced by a morphism f: X → Y in T.

Remark

Remark

If $S \subset T$ is a triangulated subcategory. For any object X in T, the restriction of a representable functor in T is cohomological in S,

 $\mathbf{T}(X,-)_{|\mathbf{S}}:\mathbf{S}\longrightarrow\mathbf{Ab}.$

Theorem (Adams representability theorem, Neeman'97)

If **T** is compactly generated and card **T**^c is countable then:

- Every cohomological functor H: (T^c)^{op} → Ab is H = T(-, X)_{|S} for some X in T.
- 2 Any natural transformation $T(-, X)_{|S} \Rightarrow T(-, Y)_{|S}$ is induced by a morphism $f: X \rightarrow Y$ in T.

Remark

Remark

If $S \subset T$ is a triangulated subcategory. For any object X in T, the restriction of a representable functor in T is cohomological in S,

 $\mathbf{T}(X,-)_{|\mathbf{S}}:\mathbf{S}\longrightarrow\mathbf{Ab}.$

Theorem (Adams representability theorem, Neeman'97)

If **T** is compactly generated and card **T**^c is countable then:

- Every cohomological functor H: (T^c)^{op} → Ab is H = T(-, X)_{|S} for some X in T.
- 2 Any natural transformation $T(-, X)_{|S} \Rightarrow T(-, Y)_{|S}$ is induced by a morphism $f: X \rightarrow Y$ in T.

Remark

Theorem (Neeman'97)

The Adams representability theorem holds in **T** iff the pure global dimension of Mod-**T**^c is ≤ 1 .

Example (Christensen-Keller-Neeman'01)

For $\mathbf{T} = \mathbf{D}(\mathbb{C}[x, y])$, part 1 of Adams representability theorem holds under the continuum hypothesis.

[Beligiannis'00] computed using [Baer-Brune-Lenzing'82] the pure global dimension of Mod- $\mathbf{D}(\Lambda)^c$ for Λ a finite dimensional hereditary algebra over an algebraically closed field k. It depends on the representation type of Λ and on card k.

skip derived functors

・ロト ・回ト ・ヨト ・ヨト

Theorem (Neeman'97)

The Adams representability theorem holds in **T** iff the pure global dimension of Mod-**T**^c is ≤ 1 .

Example (Christensen-Keller-Neeman'01)

For $\mathbf{T} = \mathbf{D}(\mathbb{C}[x, y])$, part 1 of Adams representability theorem holds under the continuum hypothesis.

[Beligiannis'00] computed using [Baer-Brune-Lenzing'82] the pure global dimension of Mod- $\mathbf{D}(\Lambda)^c$ for Λ a finite dimensional hereditary algebra over an algebraically closed field k. It depends on the representation type of Λ and on card k.

skip derived functors

・ロト ・四ト ・ヨト ・ヨト

Theorem (Neeman'97)

The Adams representability theorem holds in **T** iff the pure global dimension of Mod-**T**^c is ≤ 1 .

Example (Christensen-Keller-Neeman'01)

For $\mathbf{T} = \mathbf{D}(\mathbb{C}[x, y])$, part 1 of Adams representability theorem holds under the continuum hypothesis.

[Beligiannis'00] computed using [Baer-Brune-Lenzing'82] the pure global dimension of Mod- $\mathbf{D}(\Lambda)^c$ for Λ a finite dimensional hereditary algebra over an algebraically closed field *k*. It depends on the representation type of Λ and on card *k*.

skip derived functors

ヘロン 人間 とくほとく ほとう

An additive functor $F \colon \mathbf{A} \to \mathbf{B}$ induces an obvious triangulated functor

 $F \colon \mathbf{K}(\mathbf{A}) \to \mathbf{K}(\mathbf{B}).$

If F is exact then it also induces a functor at the level of derived categories,

$$\begin{array}{c} \mathsf{Ac}(\mathsf{A}) & \longrightarrow & \mathsf{D}(\mathsf{A}) \\ & \downarrow_{\mathcal{F}} & \downarrow_{\mathcal{F}} & \downarrow_{\mathcal{F}} \\ & \mathsf{Ac}(\mathsf{B}) & \longrightarrow & \mathsf{C}(\mathsf{B}) & \longrightarrow & \mathsf{D}(\mathsf{B}) \end{array}$$

Question: What can we do if F is not exact?

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

An additive functor $F : \mathbf{A} \to \mathbf{B}$ induces an obvious triangulated functor

$$F: \mathbf{K}(\mathbf{A}) \to \mathbf{K}(\mathbf{B}).$$

If *F* is exact then it also induces a functor at the level of derived categories,

$$\begin{array}{c} \mathsf{Ac}(\mathsf{A}) & \longrightarrow & \mathsf{K}(\mathsf{A}) & \longrightarrow & \mathsf{D}(\mathsf{A}) \\ & & \downarrow_{\mathcal{F}} & & \downarrow_{\mathcal{F}} & & \downarrow_{\mathcal{F}} \\ & \mathsf{Ac}(\mathsf{B}) & \longmapsto & \mathsf{K}(\mathsf{B}) & \longrightarrow & \mathsf{D}(\mathsf{B}) \end{array}$$

Question: What can we do if F is not exact?

・ 同 ト ・ ヨ ト ・ ヨ ト ・

ъ

An additive functor $F : \mathbf{A} \to \mathbf{B}$ induces an obvious triangulated functor

$$F: \mathbf{K}(\mathbf{A}) \to \mathbf{K}(\mathbf{B}).$$

If *F* is exact then it also induces a functor at the level of derived categories,

$$\begin{array}{c} \mathsf{Ac}(\mathsf{A}) & \longrightarrow & \mathsf{K}(\mathsf{A}) & \longrightarrow & \mathsf{D}(\mathsf{A}) \\ & & \downarrow_{\mathcal{F}} & & \downarrow_{\mathcal{F}} & & \downarrow_{\mathcal{F}} \\ & \mathsf{Ac}(\mathsf{B}) & \longmapsto & \mathsf{K}(\mathsf{B}) & \longrightarrow & \mathsf{D}(\mathsf{B}) \end{array}$$

Question: What can we do if F is not exact?

< 回 > < 回 > < 回 > .

æ

Proposition

If **A** has enough projectives then the following composite is a triangulated equivalence

$$\varphi \colon \mathbf{K}^{-}(\mathsf{Proj}(\mathbf{A})) \xrightarrow{incl.} \mathbf{K}^{-}(\mathbf{A}) \longrightarrow \mathbf{D}^{-}(\mathbf{A}).$$

Definition

The left derived functor of an additive functor $F: \boldsymbol{A} \to \boldsymbol{B}$ is the composite

$\mathbb{L}F\colon \mathbf{D}^{-}(\mathbf{A})\xrightarrow{\varphi^{-1}}\mathbf{K}^{-}(\operatorname{Proj}(\mathbf{A}))\subset \mathbf{K}^{-}(\mathbf{A})\xrightarrow{F}\mathbf{K}^{-}(\mathbf{B})\longrightarrow \mathbf{D}^{-}(\mathbf{B})$

Remark

The usual left derived functors $\mathbb{L}_n F : \mathbf{A} \to \mathbf{B}$ are recovered as

 $\mathbb{L}_n F(M) = H^{-n} \mathbb{L} F(M), \quad M \text{ in } \mathbf{A}, n \geq 0.$

Proposition

If **A** has enough projectives then the following composite is a triangulated equivalence

$$\varphi \colon \mathbf{K}^{-}(\operatorname{Proj}(\mathbf{A})) \xrightarrow{incl.} \mathbf{K}^{-}(\mathbf{A}) \longrightarrow \mathbf{D}^{-}(\mathbf{A}).$$

Definition

The left derived functor of an additive functor $F : \mathbf{A} \to \mathbf{B}$ is the composite

$$\mathbb{L}F\colon \mathbf{D}^{-}(\mathbf{A})\xrightarrow{\varphi^{-1}}\mathbf{K}^{-}(\mathsf{Proj}(\mathbf{A}))\subset \mathbf{K}^{-}(\mathbf{A})\xrightarrow{F}\mathbf{K}^{-}(\mathbf{B})\longrightarrow \mathbf{D}^{-}(\mathbf{B})$$

Remark

The usual left derived functors $\mathbb{L}_n F : \mathbf{A} \to \mathbf{B}$ are recovered as

 $\mathbb{L}_n F(M) = H^{-n} \mathbb{L} F(M), \quad M \text{ in } \mathbf{A}, n \geq 0.$

Proposition

If **A** has enough projectives then the following composite is a triangulated equivalence

$$\varphi \colon \mathbf{K}^{-}(\mathsf{Proj}(\mathbf{A})) \xrightarrow{incl.} \mathbf{K}^{-}(\mathbf{A}) \longrightarrow \mathbf{D}^{-}(\mathbf{A}).$$

Definition

The left derived functor of an additive functor $F\colon \boldsymbol{A}\to\boldsymbol{B}$ is the composite

$$\mathbb{L}F\colon \mathbf{D}^{-}(\mathbf{A})\xrightarrow{\varphi^{-1}}\mathbf{K}^{-}(\mathsf{Proj}(\mathbf{A}))\subset \mathbf{K}^{-}(\mathbf{A})\xrightarrow{F}\mathbf{K}^{-}(\mathbf{B})\longrightarrow \mathbf{D}^{-}(\mathbf{B})$$

Remark

The usual left derived functors $\mathbb{L}_n F : \mathbf{A} \to \mathbf{B}$ are recovered as

$$\mathbb{L}_n F(M) = H^{-n} \mathbb{L} F(M), \quad M \text{ in } \mathbf{A}, n \geq 0.$$

Proposition

If **A** has enough injectives then the following composite is a triangulated equivalence

$$\psi \colon \mathbf{K}^+(\operatorname{Inj}(\mathbf{A})) \xrightarrow{\operatorname{incl.}} \mathbf{K}^+(\mathbf{A}) \longrightarrow \mathbf{D}^+(\mathbf{A}).$$

Definition

The right derived functor of an additive functor $F\colon A\to B$ is the composite

$$\mathbb{R}F \colon \mathbf{D}^+(\mathbf{A}) \xrightarrow{\psi^{-1}} \mathbf{K}^+(\mathsf{Inj}(\mathbf{A})) \subset \mathbf{K}^+(\mathbf{A}) \xrightarrow{F} \mathbf{K}^+(\mathbf{B}) \longrightarrow \mathbf{D}^+(\mathbf{B})$$

Remark

The usual right derived functors $\mathbb{R}^n F : \mathbf{A} \to \mathbf{B}$ are recovered as

 $\mathbb{R}^{n}F(M) = H^{n}\mathbb{R}F(M), \quad M \text{ in } \mathbf{A}, n \geq 0.$

Suppose that **A** has exact coproducts and a projective generator *P*, e.g. $\mathbf{A} = \text{Mod-}R$ and P = R. Let $\mathbf{P} \subset \mathbf{K}(\mathbf{A})$ the smallest triangulated subcategory with coproducts containing *P*.

Theorem

The composite

$$ar{arphi} \colon \mathbf{P} \stackrel{\textit{incl.}}{\longrightarrow} \mathbf{K}(\mathbf{A}) \longrightarrow \mathbf{D}(\mathbf{A})$$

is a triangulated equivalence.

Definition

The left derived functor of an additive functor $F : \mathbf{A} \to \mathbf{B}$ is the composite

$$\mathbb{L}F \colon \mathsf{D}(\mathsf{A}) \xrightarrow{ar{arphi}^{-1}} \mathsf{P} \subset \mathsf{K}(\mathsf{A}) \xrightarrow{F} \mathsf{K}(\mathsf{B}) \longrightarrow \mathsf{D}(\mathsf{B})$$

イロト イポト イヨト イヨト

Suppose that **A** has exact coproducts and a projective generator *P*, e.g. $\mathbf{A} = \text{Mod-}R$ and P = R. Let $\mathbf{P} \subset \mathbf{K}(\mathbf{A})$ the smallest triangulated subcategory with coproducts containing *P*.

Theorem

The composite

$$\bar{\varphi} \colon \mathbf{P} \xrightarrow{incl.} \mathbf{K}(\mathbf{A}) \longrightarrow \mathbf{D}(\mathbf{A})$$

is a triangulated equivalence.

Definition

The left derived functor of an additive functor $F : \mathbf{A} \to \mathbf{B}$ is the composite

$$\mathbb{L}F \colon \mathsf{D}(\mathsf{A}) \xrightarrow{ar{arphi}^{-1}} \mathsf{P} \subset \mathsf{K}(\mathsf{A}) \xrightarrow{F} \mathsf{K}(\mathsf{B}) \longrightarrow \mathsf{D}(\mathsf{B})$$

くロト (過) (目) (日)

Suppose that **A** has exact coproducts and a projective generator *P*, e.g. $\mathbf{A} = \text{Mod-}R$ and P = R. Let $\mathbf{P} \subset \mathbf{K}(\mathbf{A})$ the smallest triangulated subcategory with coproducts containing *P*.

Theorem

The composite

$$ar{arphi} \colon \mathbf{P} \stackrel{\textit{incl.}}{\longrightarrow} \mathbf{K}(\mathbf{A}) \longrightarrow \mathbf{D}(\mathbf{A})$$

is a triangulated equivalence.

Definition

The left derived functor of an additive functor $F : \mathbf{A} \to \mathbf{B}$ is the composite

$$\mathbb{L}F \colon \mathsf{D}(\mathsf{A}) \xrightarrow{ar{arphi}^{-1}} \mathsf{P} \subset \mathsf{K}(\mathsf{A}) \xrightarrow{F} \mathsf{K}(\mathsf{B}) \longrightarrow \mathsf{D}(\mathsf{B})$$

ヘロト ヘアト ヘビト ヘビト

ъ

Suppose that **A** has exact coproducts and a projective generator *P*, e.g. $\mathbf{A} = \text{Mod-}R$ and P = R. Let $\mathbf{P} \subset \mathbf{K}(\mathbf{A})$ the smallest triangulated subcategory with coproducts containing *P*.

Theorem

The composite

$$ar{arphi} \colon \mathbf{P} \stackrel{\textit{incl.}}{\longrightarrow} \mathbf{K}(\mathbf{A}) \longrightarrow \mathbf{D}(\mathbf{A})$$

is a triangulated equivalence.

Definition

The left derived functor of an additive functor $F \colon \boldsymbol{A} \to \boldsymbol{B}$ is the composite

$$\mathbb{L} \mathcal{F} \colon \mathsf{D}(\mathsf{A}) \xrightarrow{ar{arphi}^{-1}} \mathsf{P} \subset \mathsf{K}(\mathsf{A}) \xrightarrow{\mathcal{F}} \mathsf{K}(\mathsf{B}) \longrightarrow \mathsf{D}(\mathsf{B})$$

ヘロア ヘロア ヘビア・

Suppose that **A** has exact products and an injective cogenerator *I*, e.g. $\mathbf{A} = \text{Mod-}R$ and $I = \text{Hom}_{\mathbb{Z}}(R, \mathbb{Q}/\mathbb{Z})$. Let $\mathbf{I} \subset \mathbf{K}(\mathbf{A})$ be the smallest triangulated subcategory with products containing *I*.

Theorem

The composite

$$ar{\psi} \colon \mathbf{I} \stackrel{\textit{incl.}}{\longrightarrow} \mathbf{K}(\mathbf{A}) \longrightarrow \mathbf{D}(\mathbf{A})$$

is a triangulated equivalence.

Definition

The right derived functor of an additive functor $F \colon \boldsymbol{A} \to \boldsymbol{B}$ is the composite

$$\mathbb{R}F\colon \mathsf{D}(\mathsf{A})\xrightarrow{\bar{\psi}^{-1}}\mathsf{I}\subset\mathsf{K}(\mathsf{A})\xrightarrow{F}\mathsf{K}(\mathsf{B})\longrightarrow\mathsf{D}(\mathsf{B})$$

くロト (過) (目) (日)

ъ

Theorem

With the suspension of complexes and the exact triangles indicated above, the homotopy category K(A) of an additive category A is a triangulated category.

Remark

The same result holds for differential graded algebras (possibly with several objects).

Definition (Keller, Krause)

A triangulated category is algebraic if it is triangulated equivalent to a triangulated subcategory of K(A) for some additive category A.

・ロト ・回ト ・ヨト ・ヨト

Theorem

With the suspension of complexes and the exact triangles indicated above, the homotopy category K(A) of an additive category A is a triangulated category.

Remark

The same result holds for differential graded algebras (possibly with several objects).

Definition (Keller, Krause)

A triangulated category is algebraic if it is triangulated equivalent to a triangulated subcategory of K(A) for some additive category A.

ヘロト ヘワト ヘビト ヘビト

Theorem

With the suspension of complexes and the exact triangles indicated above, the homotopy category K(A) of an additive category A is a triangulated category.

Remark

The same result holds for differential graded algebras (possibly with several objects).

Definition (Keller, Krause)

A triangulated category is algebraic if it is triangulated equivalent to a triangulated subcategory of K(A) for some additive category A.

ヘロン ヘアン ヘビン ヘビン

ъ

Proposition

Let X be an object in an algebraic triangulated category T and let

$$X \xrightarrow{n \cdot 1_X} X \longrightarrow X/n \longrightarrow \Sigma X$$

be an exact triangle, $n \in \mathbb{Z}$. Then

$$n \cdot 1_{X/n} = 0 \colon X/n \longrightarrow X/n.$$

Proof.

We can directly suppose $\mathbf{T} = \mathbf{K}(\mathbf{A})$. If we take X/n to be the mapping cone of $n \cdot 1_X : X \to X$ then it is easy to check that $n \cdot 1_{X/n} : X/n \to X/n$ in $\mathbf{C}(\mathbf{A})$ is nullhomotopic.

・ロト ・四ト ・ヨト ・ヨト ・

3

Proposition

Let X be an object in an algebraic triangulated category T and let

$$X \xrightarrow{n \cdot 1_X} X \longrightarrow X/n \longrightarrow \Sigma X$$

be an exact triangle, $n \in \mathbb{Z}$. Then

$$n \cdot 1_{X/n} = 0 \colon X/n \longrightarrow X/n.$$

Proof.

We can directly suppose $\mathbf{T} = \mathbf{K}(\mathbf{A})$. If we take X/n to be the mapping cone of $n \cdot \mathbf{1}_X : X \to X$ then it is easy to check that $n \cdot \mathbf{1}_{X/n} : X/n \to X/n$ in $\mathbf{C}(\mathbf{A})$ is nullhomotopic.

ヘロン 人間 とくほとく ほとう

ъ

An abelian category **A** is Frobenius if it has enough injectives and projectives, and injective and projective objects coincide.

Example

- Mod-*R* for *R* a quasi-Frobenius ring, i.e. *R* is right noetherian and right self-injective.
- Also mod-R, the full subcategory of finitely presented modules.
- Examples of quasi-Frobenius rings are fields, division algebras, \mathbb{Z}/n , k[X]/(f), and the group algebra kG of a finite group G.
- mod-**T**, where **T** is a triangulated category.

ヘロト ヘアト ヘビト ヘ

An abelian category **A** is Frobenius if it has enough injectives and projectives, and injective and projective objects coincide.

Example

- Mod-*R* for *R* a quasi-Frobenius ring, i.e. *R* is right noetherian and right self-injective.
- Also mod-R, the full subcategory of finitely presented modules.
- Examples of quasi-Frobenius rings are fields, division algebras, Z/n, k[X]/(f), and the group algebra kG of a finite group G.
- mod-**T**, where **T** is a triangulated category.

・ロ・・ (日・・ 日・・ 日)

An abelian category **A** is Frobenius if it has enough injectives and projectives, and injective and projective objects coincide.

Example

• Mod-*R* for *R* a quasi-Frobenius ring, i.e. *R* is right noetherian and right self-injective.

• Also mod-R, the full subcategory of finitely presented modules.

- Examples of quasi-Frobenius rings are fields, division algebras, Z/n, k[X]/(f), and the group algebra kG of a finite group G.
- mod-**T**, where **T** is a triangulated category.

イロト イポト イヨト イヨト

An abelian category **A** is Frobenius if it has enough injectives and projectives, and injective and projective objects coincide.

Example

- Mod-*R* for *R* a quasi-Frobenius ring, i.e. *R* is right noetherian and right self-injective.
- Also mod-R, the full subcategory of finitely presented modules.
- Examples of quasi-Frobenius rings are fields, division algebras, \mathbb{Z}/n , k[X]/(f), and the group algebra kG of a finite group G.
- mod-**T**, where **T** is a triangulated category.

ヘロト 人間 とくほとくほとう

An abelian category **A** is Frobenius if it has enough injectives and projectives, and injective and projective objects coincide.

Example

- Mod-*R* for *R* a quasi-Frobenius ring, i.e. *R* is right noetherian and right self-injective.
- Also mod-R, the full subcategory of finitely presented modules.
- Examples of quasi-Frobenius rings are fields, division algebras, \mathbb{Z}/n , k[X]/(f), and the group algebra kG of a finite group G.
- mod-T, where T is a triangulated category.

イロン イロン イヨン イヨン

The stable category \underline{A} of a Frobenius abelian category \underline{A} is the quotient of \underline{A} by the ideal of morphisms $f: X \to Y$ which factor through an injective-projective object $f: X \to I \to Y$.

The cosyzygy SX of an object X in \mathbf{A} is the cokernel of a monomorphism of X into an injective-projective object,

 $X \hookrightarrow I \twoheadrightarrow SX.$

The choice of such short exact sequences defines a self-equivalence,

$$S: \underline{\mathbf{A}} \xrightarrow{\simeq} \underline{\mathbf{A}}.$$

ヘロト ヘヨト ヘヨト ヘ

The stable category \underline{A} of a Frobenius abelian category \underline{A} is the quotient of \underline{A} by the ideal of morphisms $f: X \to Y$ which factor through an injective-projective object $f: X \to I \to Y$.

The cosyzygy SX of an object X in A is the cokernel of a monomorphism of X into an injective-projective object,

 $X \hookrightarrow I \twoheadrightarrow SX.$

The choice of such short exact sequences defines a self-equivalence,

$$S: \underline{\mathbf{A}} \xrightarrow{\simeq} \underline{\mathbf{A}}.$$

ヘロト ヘアト ヘビト ヘビト
Definition

Given a morphism $f: X \to Y$ in **A** we say that the subdiagram in red

is an exact triangle when projected to A.

Theorem

The stable category \underline{A} of a Frobenius abelian category A is triangulated with the structure above.

Definition

Given a morphism $f: X \to Y$ in **A** we say that the subdiagram in red

is an exact triangle when projected to A.

Theorem

The stable category \underline{A} of a Frobenius abelian category \underline{A} is triangulated with the structure above.

Example

• Taking 0-cocycles defines a triangulated equivalence

$$Z^0$$
: **Ac**(Proj(**A**)) $\xrightarrow{\simeq}$ **A**.

• If R is a quasi-Frobenius ring then the composite

 $\operatorname{mod} R \longrightarrow \mathbf{D}^{b}(\operatorname{mod} R) \longrightarrow \mathbf{D}^{b}(\operatorname{mod} R)/\mathbf{D}^{b}(\operatorname{proj} R)$

induces a triangulated equivalence

 $\operatorname{\underline{mod}}_{-}R \overset{\simeq}{\longrightarrow} \mathbf{D}^{b}(\operatorname{mod}_{-}R)/\mathbf{D}^{b}(\operatorname{proj}_{-}R).$

This last category is called in general the **derived category of** singularities $D_{sg}(R)$, which is trivial if R has finite homological dimension, in particular if R is a commutative noetherian regular ring.

Example

• Taking 0-cocycles defines a triangulated equivalence

 Z^0 : **Ac**(Proj(**A**)) $\xrightarrow{\simeq}$ **<u>A</u>**.

• If R is a quasi-Frobenius ring then the composite

 $\operatorname{mod-} R \longrightarrow \mathbf{D}^{b}(\operatorname{mod-} R) \longrightarrow \mathbf{D}^{b}(\operatorname{mod-} R)/\mathbf{D}^{b}(\operatorname{proj-} R)$

induces a triangulated equivalence

 $\underline{\mathrm{mod}}_{-R} \xrightarrow{\simeq} \mathbf{D}^{b}(\mathrm{mod}_{-R})/\mathbf{D}^{b}(\mathrm{proj}_{-R}).$

This last category is called in general the **derived category of** singularities $D_{sg}(R)$, which is trivial if R has finite homological dimension, in particular if R is a commutative noetherian regular ring.

Example

• Taking 0-cocycles defines a triangulated equivalence

 Z^0 : **Ac**(Proj(**A**)) $\xrightarrow{\simeq}$ **<u>A</u>**.

• If R is a quasi-Frobenius ring then the composite

 $\operatorname{mod-} R \longrightarrow \mathbf{D}^{b}(\operatorname{mod-} R) \longrightarrow \mathbf{D}^{b}(\operatorname{mod-} R)/\mathbf{D}^{b}(\operatorname{proj-} R)$

induces a triangulated equivalence

 $\underline{\mathrm{mod}}_{-R} \xrightarrow{\simeq} \mathbf{D}^{b}(\mathrm{mod}_{-R})/\mathbf{D}^{b}(\mathrm{proj}_{-R}).$

This last category is called in general the derived category of singularities $D_{sg}(R)$, which is trivial if R has finite homological dimension, in particular if R is a commutative noetherian regular ring.

Let (\mathbf{T}, Σ) be a small suspended category such that mod-**T** is Frobenius abelian.

The suspension functor extends as follows,

Theorem (Heller'68)

If **T** is idempontent complete, the Puppe triangulated structures on (\mathbf{T}, Σ) are in bijection with the natural isomorphisms $\theta \colon \Sigma^3 \cong S$ such that

$$heta \Sigma + \sigma(\Sigma heta) = \mathbf{0}.$$

Fernando Muro Triangulated categories

ヘロア 人間 アメ 回ア 人 回ア

3

Let (\mathbf{T}, Σ) be a small suspended category such that mod-**T** is Frobenius abelian.

The suspension functor extends as follows,

Theorem (Heller'68)

If **T** is idempontent complete, the Puppe triangulated structures on (\mathbf{T}, Σ) are in bijection with the natural isomorphisms $\theta \colon \Sigma^3 \cong S$ such that

$$\partial \Sigma + \sigma(\Sigma \theta) = 0.$$

Fernando Muro Triangulated categories

ヘロン 人間 とくほ とくほう

Example

Consider the suspended category $(\mathbf{T}, \Sigma) = (\text{mod-}k, \text{identity})$, k a field. In this case mod- $\mathbf{T} = \text{mod-}k$ and $\underline{\text{mod-}}k = 0$ is trivial, hence (\mathbf{T}, Σ) has a unique Puppe triangulated structure.

As one can easily check, a triangle in mod-k

is exact iff it is contractible, and **T** satisfies the octahedral axiom. It is algebraic, actually there is a triangulated equivalence

 $\operatorname{mod} k \xrightarrow{\simeq} \operatorname{\underline{mod}} k[X]/(X^2)$

Example

Consider the suspended category $(\mathbf{T}, \Sigma) = (\text{mod-}k, \text{identity})$, k a field. In this case mod- $\mathbf{T} = \text{mod-}k$ and $\underline{\text{mod-}}k = 0$ is trivial, hence (\mathbf{T}, Σ) has a unique Puppe triangulated structure.

As one can easily check, a triangle in mod-k

is exact iff it is contractible, and **T** satisfies the octahedral axiom.

It is algebraic, actually there is a triangulated equivalence

 $\operatorname{mod} k \xrightarrow{\simeq} \operatorname{\underline{mod}} k[X]/(X^2)$

Example

Consider the suspended category $(\mathbf{T}, \Sigma) = (\text{mod-}k, \text{identity})$, k a field. In this case mod- $\mathbf{T} = \text{mod-}k$ and $\underline{\text{mod-}}k = 0$ is trivial, hence (\mathbf{T}, Σ) has a unique Puppe triangulated structure.

As one can easily check, a triangle in mod-k

is exact iff it is contractible, and **T** satisfies the octahedral axiom.

It is algebraic, actually there is a triangulated equivalence

 $\operatorname{mod} k \xrightarrow{\simeq} \operatorname{\underline{mod}} k[X]/(X^2)$

Example

Consider the suspended category $(\mathbf{T}, \Sigma) = (\text{mod-}k, \text{identity})$, k a field. In this case mod- $\mathbf{T} = \text{mod-}k$ and $\underline{\text{mod-}}k = 0$ is trivial, hence (\mathbf{T}, Σ) has a unique Puppe triangulated structure.

As one can easily check, a triangle in mod-k

is exact iff it is contractible, and \mathbf{T} satisfies the octahedral axiom.

It is algebraic, actually there is a triangulated equivalence

$$\operatorname{mod} k \xrightarrow{\simeq} \operatorname{\underline{mod}} k[X]/(X^2)$$

Example

Consider the suspended category $(\mathbf{T}, \Sigma) = (\text{proj-}\mathbb{Z}/4, \text{identity}).$

In this case mod- $\mathbb{T} = \text{mod-}\mathbb{Z}/4$. Moreover, any $\mathbb{Z}/4$ -module is of the form $(\mathbb{Z}/4)^p \oplus (\mathbb{Z}/2)^q$ therefore

 $\operatorname{mod}\mathbb{Z}/2 \xrightarrow{\simeq} \operatorname{mod}\mathbb{Z}/4.$

If θ : $\Sigma^3 \cong S$ is the identity natural isomorphism, then the equation in Heller's theorem reduces in this case to

 $1+1=0\in\mathbb{Z}/2,$

so there is a unique Puppe triangulated structure on (\mathbf{T}, Σ) .

・ロト ・聞 ト ・ ヨト ・ ヨトー

Example

Consider the suspended category $(\mathbf{T}, \Sigma) = (\text{proj-}\mathbb{Z}/4, \text{identity}).$

In this case mod-**T** = mod- $\mathbb{Z}/4$. Moreover, any $\mathbb{Z}/4$ -module is of the form $(\mathbb{Z}/4)^p \oplus (\mathbb{Z}/2)^q$ therefore

$$\operatorname{mod-}\mathbb{Z}/2 \xrightarrow{\simeq} \operatorname{\underline{mod}-}\mathbb{Z}/4.$$

If θ : $\Sigma^3 \cong S$ is the identity natural isomorphism, then the equation in Heller's theorem reduces in this case to

 $1+1=0\in\mathbb{Z}/2,$

so there is a unique Puppe triangulated structure on (\mathbf{T}, Σ) .

・ロト ・回 ト ・ ヨト ・ ヨトー

Example

Consider the suspended category $(\mathbf{T}, \Sigma) = (\text{proj-}\mathbb{Z}/4, \text{identity}).$

In this case mod- $\mathbf{T} = \text{mod-}\mathbb{Z}/4$. Moreover, any $\mathbb{Z}/4$ -module is of the form $(\mathbb{Z}/4)^p \oplus (\mathbb{Z}/2)^q$ therefore

$$mod-\mathbb{Z}/2 \xrightarrow{\simeq} \underline{mod}-\mathbb{Z}/4.$$

If θ : $\Sigma^3 \cong S$ is the identity natural isomorphism, then the equation in Heller's theorem reduces in this case to

$$1+1=0\in\mathbb{Z}/2,$$

so there is a unique Puppe triangulated structure on (\mathbf{T}, Σ) .

・ロト ・聞 と ・ ヨ と ・ ヨ と …

3

Theorem (M-Schwede-Strickland'07)

The unique Puppe triangulated structure on proj- $\mathbb{Z}/4$ with $\Sigma =$ the indentity satisfies the octahedral axiom.

The non-contractible triangle

is exact.

This triangulated category is neither algebraic nor topological.

・ロト ・四ト ・ヨト ・ヨト

э

Theorem (M-Schwede-Strickland'07)

The unique Puppe triangulated structure on proj- $\mathbb{Z}/4$ with $\Sigma =$ the indentity satisfies the octahedral axiom.

The non-contractible triangle

is exact.

This triangulated category is neither algebraic nor topological.

ヘロト ヘ戸ト ヘヨト ヘヨト

Theorem (M-Schwede-Strickland'07)

The unique Puppe triangulated structure on proj- $\mathbb{Z}/4$ with $\Sigma =$ the indentity satisfies the octahedral axiom.

The non-contractible triangle

is exact.

This triangulated category is neither algebraic nor topological.

ヘロト 人間 ト ヘヨト ヘヨト

The Spanier-Whitehead category is the triangulated category SW defined as:

Obj (X, n), where X is a finite pointed CW-complex and $n \in \mathbb{Z}$. Map $SW((X, n), (Y, m)) = \lim_{k \to +\infty} [\Sigma^{k+n}X, \Sigma^{k+m}Y].$

Shift $\Sigma(X, n) = (X, n+1) \cong (\Sigma X, n)$.

<ロ> (四) (四) (三) (三) (三)

The Spanier-Whitehead category is the triangulated category SW defined as:

Obj (X, n), where X is a finite pointed CW-complex and $n \in \mathbb{Z}$.

Map **SW**((*X*, *n*), (*Y*, *m*)) = $\lim_{k \to +\infty} [\Sigma^{k+n}X, \Sigma^{k+m}Y].$

Shift $\Sigma(X, n) = (X, n+1) \cong (\Sigma X, n)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Spanier-Whitehead category is the triangulated category SW defined as:

Obj (X, n), where X is a finite pointed CW-complex and $n \in \mathbb{Z}$.

Map **SW**((X, n), (Y, m)) = $\lim_{k \to +\infty} [\Sigma^{k+n}X, \Sigma^{k+m}Y].$

Shift $\Sigma(X, n) = (X, n+1) \cong (\Sigma X, n)$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

The Spanier-Whitehead category is the triangulated category SW defined as:

Obj (X, n), where X is a finite pointed CW-complex and $n \in \mathbb{Z}$.

Map **SW**((X, n), (Y, m)) = $\lim_{k \to +\infty} [\Sigma^{k+n}X, \Sigma^{k+m}Y].$

Shift
$$\Sigma(X, n) = (X, n+1) \cong (\Sigma X, n)$$
.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 \triangle Given a pointed map $f: X \rightarrow Y$ the mapping cone C_f is

There is a sequence of pointed maps,

$$X \stackrel{f}{\longrightarrow} Y \stackrel{i}{\longrightarrow} C_f \stackrel{q}{\longrightarrow} \Sigma X.$$

The prototype of exact triangle in **SW** is, $n \in \mathbb{Z}$,

$$(X, n) \xrightarrow{f} (Y, n) \xrightarrow{i} (C_f, n) \xrightarrow{q} (\Sigma X, n) \cong \Sigma(X, n)$$

★御★ ★理★ ★理★

 \triangle Given a pointed map $f: X \rightarrow Y$ the mapping cone C_f is

There is a sequence of pointed maps,

$$X \xrightarrow{f} Y \xrightarrow{i} C_f \xrightarrow{q} \Sigma X.$$

The prototype of exact triangle in **SW** is, $n \in \mathbb{Z}$,

$$(X, n) \xrightarrow{f} (Y, n) \xrightarrow{i} (C_f, n) \xrightarrow{q} (\Sigma X, n) \cong \Sigma(X, n)$$

(4回) (日) (日)

 \triangle Given a pointed map $f: X \rightarrow Y$ the mapping cone C_f is

There is a sequence of pointed maps,

$$X \xrightarrow{f} Y \xrightarrow{i} C_f \xrightarrow{q} \Sigma X.$$

The prototype of exact triangle in **SW** is, $n \in \mathbb{Z}$,

$$(X,n) \stackrel{f}{\longrightarrow} (Y,n) \stackrel{i}{\longrightarrow} (\mathcal{C}_f,n) \stackrel{q}{\longrightarrow} (\Sigma X,n) \cong \Sigma(X,n).$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Example

If $S = (S^0, 0)$ then there is an exact triangle in SW,

$$S \xrightarrow{2 \cdot 1_S} S \xrightarrow{i} S/2 \xrightarrow{q} \Sigma S,$$

where $S/2 = (\mathbb{R}P^2, -1)$. The map

 $0 \neq 2 \cdot 1_{S/2} \colon S/2 \longrightarrow S/2$

is the composite

$$S/2 \stackrel{q}{\longrightarrow} \Sigma S \stackrel{\eta}{\longrightarrow} S \stackrel{i}{\longrightarrow} S/2,$$

where η is the stable Hopf map, which satisfies $2 \cdot \eta = 0$.

Corollary

SW is not algebraic.

-

Example

If $S = (S^0, 0)$ then there is an exact triangle in SW,

$$S \xrightarrow{2 \cdot 1_S} S \xrightarrow{i} S/2 \xrightarrow{q} \Sigma S,$$

where $S/2 = (\mathbb{R}P^2, -1)$. The map

$$0 \neq 2 \cdot 1_{S/2} \colon S/2 \longrightarrow S/2$$

is the composite

$$S/2 \stackrel{q}{\longrightarrow} \Sigma S \stackrel{\eta}{\longrightarrow} S \stackrel{i}{\longrightarrow} S/2,$$

where η is the stable Hopf map, which satisfies $2 \cdot \eta = 0$.

Corollary SW is not algebraic.

Example

If $S = (S^0, 0)$ then there is an exact triangle in SW,

$$S \xrightarrow{2 \cdot 1_S} S \xrightarrow{i} S/2 \xrightarrow{q} \Sigma S,$$

where $S/2 = (\mathbb{R}P^2, -1)$. The map

$$\mathbf{0} \neq \mathbf{2} \cdot \mathbf{1}_{S/2} \colon S/2 \longrightarrow S/2$$

is the composite

$$S/2 \stackrel{q}{\longrightarrow} \Sigma S \stackrel{\eta}{\longrightarrow} S \stackrel{i}{\longrightarrow} S/2,$$

where η is the stable Hopf map, which satisfies $2 \cdot \eta = 0$.

Corollary SW is not algebraic.

Proposition (Schwede-Shipley'02)

SW is the 'free topological triangulated category' on one generator *S*. In particular if *X* is an object in a topological triangulated category **T** then there is an exact functor

$F: \mathbf{SW} \longrightarrow \mathbf{T}$

with F(S) = X.

Remark

Similarly, $\mathbf{D}^{b}(\mathbb{Z})$ is the 'free algebraic triangulated category' on one generator \mathbb{Z} .

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Proposition (Schwede-Shipley'02)

SW is the 'free topological triangulated category' on one generator *S*. In particular if *X* is an object in a topological triangulated category **T** then there is an exact functor

$F: \mathbf{SW} \longrightarrow \mathbf{T}$

with F(S) = X.

Remark

Similarly, $\mathbf{D}^{b}(\mathbb{Z})$ is the 'free algebraic triangulated category' on one generator \mathbb{Z} .

ヘロト 人間 とくほとくほとう

Proposition (Schwede-Shipley'02)

SW is the 'free topological triangulated category' on one generator *S*. In particular if *X* is an object in a topological triangulated category **T** then there is an exact functor

$F: \mathbf{SW} \longrightarrow \mathbf{T}$

with F(S) = X.

Remark

Similarly, $\mathbf{D}^{b}(\mathbb{Z})$ is the 'free algebraic triangulated category' on one generator \mathbb{Z} .

イロト イポト イヨト イヨト 三日

We stated above:

Theorem

The unique triangulated structure on proj- $\mathbb{Z}/4$ with $\Sigma =$ the indentity is not topological.

Proof.

Assume it is topological. Let $F : \mathbf{SW} \to \text{proj-}\mathbb{Z}/4$ be an exact functor as above for $X = \mathbb{Z}/4$. By the previous example, since X/2 = X in proj- $\mathbb{Z}/4$,

$$2 \cdot \mathbf{1}_{\mathbb{Z}/4} = 2 \cdot F(i\eta q) = F(i)F(2 \cdot \eta)F(q) = 0,$$

and this is obviously not true.

・ロト ・回ト ・ヨト ・ヨト

We stated above:

Theorem

The unique triangulated structure on proj- $\mathbb{Z}/4$ with $\Sigma =$ the indentity is not topological.

Proof.

Assume it is topological. Let $F : \mathbf{SW} \to \text{proj-}\mathbb{Z}/4$ be an exact functor as above for $X = \mathbb{Z}/4$. By the previous example, since X/2 = X in proj- $\mathbb{Z}/4$,

$$2 \cdot \mathbf{1}_{\mathbb{Z}/4} = 2 \cdot F(i\eta q) = F(i)F(2 \cdot \eta)F(q) = 0,$$

and this is obviously not true.

ヘロト 人間 とくほとくほとう

э

There are many different kinds of models for triangulated categories:

- Stable model categories.
- Stable homotopy categories [Heller'88].
- Triangulated derivators [Grothendieck'90].
- Stable ∞ -categories [Lurie'06].

In all these cases the 'free model in one generator' is associated to the triangulated category **SW**, therefore the exotic triangulated catgory proj- $\mathbb{Z}/4$ does not admit any of these kinds of models.

Moreover, it can neither be obtained out of a triangulated 2-category [Baues-M'08].

(日)

There are many different kinds of models for triangulated categories:

- Stable model categories.
- Stable homotopy categories [Heller'88].
- Triangulated derivators [Grothendieck'90].
- Stable ∞ -categories [Lurie'06].

In all these cases the 'free model in one generator' is associated to the triangulated category **SW**, therefore the exotic triangulated catgory proj- $\mathbb{Z}/4$ does not admit any of these kinds of models.

Moreover, it can neither be obtained out of a triangulated 2-category [Baues-M'08].

(日)

There are many different kinds of models for triangulated categories:

- Stable model categories.
- Stable homotopy categories [Heller'88].
- Triangulated derivators [Grothendieck'90].
- Stable ∞ -categories [Lurie'06].

In all these cases the 'free model in one generator' is associated to the triangulated category **SW**, therefore the exotic triangulated catgory proj- $\mathbb{Z}/4$ does not admit any of these kinds of models.

Moreover, it can neither be obtained out of a triangulated 2-category [Baues-M'08].

(日)

There are many different kinds of models for triangulated categories:

- Stable model categories.
- Stable homotopy categories [Heller'88].
- Triangulated derivators [Grothendieck'90].
- Stable ∞ -categories [Lurie'06].

In all these cases the 'free model in one generator' is associated to the triangulated category **SW**, therefore the exotic triangulated catgory proj- $\mathbb{Z}/4$ does not admit any of these kinds of models.

Moreover, it can neither be obtained out of a triangulated 2-category [Baues-M'08].
Remark

There are many different kinds of models for triangulated categories:

- Stable model categories.
- Stable homotopy categories [Heller'88].
- Triangulated derivators [Grothendieck'90].
- Stable ∞ -categories [Lurie'06].

In all these cases the 'free model in one generator' is associated to the triangulated category **SW**, therefore the exotic triangulated catgory proj- $\mathbb{Z}/4$ does not admit any of these kinds of models.

Moreover, it can neither be obtained out of a triangulated 2-category [Baues-M'08].

Remark

There are many different kinds of models for triangulated categories:

- Stable model categories.
- Stable homotopy categories [Heller'88].
- Triangulated derivators [Grothendieck'90].
- Stable ∞ -categories [Lurie'06].

In all these cases the 'free model in one generator' is associated to the triangulated category **SW**, therefore the exotic triangulated catgory proj- $\mathbb{Z}/4$ does not admit any of these kinds of models.

Moreover, it can neither be obtained out of a triangulated 2-category [Baues-M'08].

(日)