When can we enhance a triangulated category?

Fernando Muro

Universitat de Barcelona Dept. Àlgebra i Geometria

Conference on Homology and Homotopy Bonn, March 2008 On the occasion of the retirement of Hans-Joachim Baues

When can we enhance a triangulated category \mathcal{T} ?

- When is \mathcal{T} algebraic?
 - ▶ Over a field *k*.
 - Over an arbitrary commutative ring *k*.
- When is \mathcal{T} topological?

ヘロト 人間 ト くほ ト くほ トー

When can we enhance a triangulated category $\mathcal{T}\textbf{?}$

• When is T algebraic?

- Over a field k.
- Over an arbitrary commutative ring *k*.
- When is \mathcal{T} topological?

ヘロト 人間 ト くほ ト くほ トー

When can we enhance a triangulated category $\mathcal{T}\textbf{?}$

• When is T algebraic?

- Over a field k.
- Over an arbitrary commutative ring k.
- When is \mathcal{T} topological?

ヘロト 人間 ト くほ ト くほ トー

When can we enhance a triangulated category \mathcal{T} ?

- When is T algebraic?
 - Over a field k.
 - Over an arbitrary commutative ring k.
- When is \mathcal{T} topological?

ヘロト 人間 ト くほ ト くほ トー

When can we enhance a triangulated category \mathcal{T} ?

- When is T algebraic?
 - Over a field k.
 - Over an arbitrary commutative ring *k*.
- When is T topological?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition (Keller'06)

A triangulated category T is algebraic if $T \simeq \underline{\mathcal{E}}$ is equivalent to the stable category $\underline{\mathcal{E}}$ of a Frobenius exact category \mathcal{E} .

Theorem (Keller'94)

If T is compactly generated then T is algebraic $\Leftrightarrow T = H^0(\mathcal{A})$ for a pretriangulated A_{∞} -category \mathcal{A} .

くロト (過) (目) (日)

Definition (Keller'06)

A triangulated category T is algebraic if $T \simeq \underline{\mathcal{E}}$ is equivalent to the stable category $\underline{\mathcal{E}}$ of a Frobenius exact category \mathcal{E} .

Theorem (Keller'94)

If \mathcal{T} is compactly generated then \mathcal{T} is algebraic $\Leftrightarrow \mathcal{T} = H^0(\mathcal{A})$ for a pretriangulated A_{∞} -category \mathcal{A} .

ヘロト ヘアト ヘビト ヘビト

Definition

An A_{∞} -category A consists of

- Objects X, Y, ...
- Morphism \mathbb{Z} -graded k-modules $\mathcal{A}(X, Y)$,
- Identity morphisms $id_X \in \mathcal{A}(X, X)^0$,
- *n-Fold composition laws, n* \geq 1,

$$m_n: \mathcal{A}(X_{n-1}, X_n) \otimes \cdots \otimes \mathcal{A}(X_0, X_1) \longrightarrow \mathcal{A}(X_0, X_n),$$

$$\deg(m_n) = 2-n.$$

ヘロン 人間 とくほ とくほ とう

Definition

An A_{∞} -category A consists of

- Objects X, Y, ...
- Morphism \mathbb{Z} -graded k-modules $\mathcal{A}(X, Y)$,
- Identity morphisms $id_X \in \mathcal{A}(X, X)^0$,

• *n-Fold composition laws, n* \geq 1,

$$m_n: \mathcal{A}(X_{n-1}, X_n) \otimes \cdots \otimes \mathcal{A}(X_0, X_1) \longrightarrow \mathcal{A}(X_0, X_n),$$

$$\deg(m_n) = 2-n.$$

ヘロン 人間 とくほ とくほ とう

Definition

An A_{∞} -category A consists of

- Objects X, Y, ...
- Morphism \mathbb{Z} -graded k-modules $\mathcal{A}(X, Y)$,
- Identity morphisms $id_X \in \mathcal{A}(X, X)^0$,

• *n*-Fold composition laws, $n \ge 1$,

 $m_n: \mathcal{A}(X_{n-1}, X_n) \otimes \cdots \otimes \mathcal{A}(X_0, X_1) \longrightarrow \mathcal{A}(X_0, X_n),$

 $\deg(m_n) = 2-n.$

ヘロン 人間 とくほ とくほ とう

Definition

An A_{∞} -category A consists of

- Objects X, Y, ...
- Morphism \mathbb{Z} -graded k-modules $\mathcal{A}(X, Y)$,
- Identity morphisms $id_X \in \mathcal{A}(X, X)^0$,

• *n*-Fold composition laws, $n \ge 1$,

 $m_n: \mathcal{A}(X_{n-1}, X_n) \otimes \cdots \otimes \mathcal{A}(X_0, X_1) \longrightarrow \mathcal{A}(X_0, X_n),$

 $\deg(m_n) = 2-n.$

ヘロン 人間 とくほ とくほ とう

3

An A_{∞} -category A consists of

- Objects X, Y, ...
- Morphism \mathbb{Z} -graded k-modules $\mathcal{A}(X, Y)$,
- Identity morphisms $id_X \in \mathcal{A}(X, X)^0$,
- *n*-Fold composition laws, $n \ge 1$,

$$m_n: \mathcal{A}(X_{n-1}, X_n) \otimes \cdots \otimes \mathcal{A}(X_0, X_1) \longrightarrow \mathcal{A}(X_0, X_n),$$

$$\deg(m_n) = 2-n.$$

イロン 不得 とくほ とくほう 一日

- $m_1m_1 = 0$, i.e. $\mathcal{A}(X, Y)$ are complexes.
- $m_1m_2 = m_2(1 \otimes m_1 + m_1 \otimes 1)$, i.e. m_1 is a derivation for the product m_2 .
- $m_2(m_2 \otimes 1 1 \otimes m_2) = m_1 m_3 + m_3(1 \otimes 1 \otimes m_1 + 1 \otimes m_1 \otimes 1 + m_1 \otimes 1 \otimes 1)$, i.e. m_2 is associative up to the homotopy m_3 .

• . . .

• Identity morphisms in A must yield identities in H^*A .

ヘロト ヘアト ヘビト ヘビト

- $m_1m_1 = 0$, i.e. $\mathcal{A}(X, Y)$ are complexes.
- $m_1m_2 = m_2(1 \otimes m_1 + m_1 \otimes 1)$, i.e. m_1 is a derivation for the product m_2 .
- $m_2(m_2 \otimes 1 1 \otimes m_2) = m_1 m_3 + m_3(1 \otimes 1 \otimes m_1 + 1 \otimes m_1 \otimes 1 + m_1 \otimes 1 \otimes 1)$, i.e. m_2 is associative up to the homotopy m_3 .
- . . .
- Identity morphisms in A must yield identities in H^*A .

ヘロン 人間 とくほ とくほ とう

- $m_1m_1 = 0$, i.e. $\mathcal{A}(X, Y)$ are complexes.
- $m_1m_2 = m_2(1 \otimes m_1 + m_1 \otimes 1)$, i.e. m_1 is a derivation for the product m_2 .
- $m_2(m_2 \otimes 1 1 \otimes m_2) = m_1 m_3 + m_3(1 \otimes 1 \otimes m_1 + 1 \otimes m_1 \otimes 1 + m_1 \otimes 1 \otimes 1)$, i.e. m_2 is associative up to the homotopy m_3 .

• . . .

• Identity morphisms in A must yield identities in H^*A .

ヘロト ヘアト ヘビト ヘビト

- $m_1 m_1 = 0$, i.e. $\mathcal{A}(X, Y)$ are complexes.
- $m_1m_2 = m_2(1 \otimes m_1 + m_1 \otimes 1)$, i.e. m_1 is a derivation for the product m_2 .
- $m_2(m_2 \otimes 1 1 \otimes m_2) = m_1 m_3 + m_3(1 \otimes 1 \otimes m_1 + 1 \otimes m_1 \otimes 1 + m_1 \otimes 1 \otimes 1)$, i.e. m_2 is associative up to the homotopy m_3 .

• . . .

• Identity morphisms in A must yield identities in H^*A .

・ロト ・回 ト ・ ヨ ト ・ ヨ ト …

- $m_1 m_1 = 0$, i.e. $\mathcal{A}(X, Y)$ are complexes.
- $m_1m_2 = m_2(1 \otimes m_1 + m_1 \otimes 1)$, i.e. m_1 is a derivation for the product m_2 .
- $m_2(m_2 \otimes 1 1 \otimes m_2) = m_1 m_3 + m_3(1 \otimes 1 \otimes m_1 + 1 \otimes m_1 \otimes 1 + m_1 \otimes 1 \otimes 1)$, i.e. m_2 is associative up to the homotopy m_3 .
- . . .

• Identity morphisms in A must yield identities in H^*A .

・ロト ・回 ト ・ ヨ ト ・ ヨ ト …

- $m_1 m_1 = 0$, i.e. $\mathcal{A}(X, Y)$ are complexes.
- $m_1m_2 = m_2(1 \otimes m_1 + m_1 \otimes 1)$, i.e. m_1 is a derivation for the product m_2 .
- $m_2(m_2 \otimes 1 1 \otimes m_2) = m_1 m_3 + m_3(1 \otimes 1 \otimes m_1 + 1 \otimes m_1 \otimes 1 + m_1 \otimes 1 \otimes 1)$, i.e. m_2 is associative up to the homotopy m_3 .
- . . .
- Identity morphisms in A must yield identities in H^*A .

・ロト ・回 ト ・ ヨ ト ・ ヨ ト …

Example

• One-object A_{∞} -categories are Stasheff's A_{∞} -algebras.

• DG-categories are A_{∞} -categories with $m_n = 0$ for all $n \ge 3$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Example

- One-object A_{∞} -categories are Stasheff's A_{∞} -algebras.
- DG-categories are A_{∞} -categories with $m_n = 0$ for all $n \ge 3$.

ヘロト 人間 とくほ とくほ とう

3

An A_{∞} -category \mathcal{A} is minimal if $m_1 = 0$.

In this case A is a deformation of the graded category (A, m_2) .

Theorem (Kadeishvili'80, Lefèvre-Hasegawa'03)

Any A_{∞} -category $\mathcal A$ over a field k is quasi-isomorphic to a minimal one, defined over $H^*\mathcal A$.

• • • • • • • • • • • •

An A_{∞} -category A is minimal if $m_1 = 0$.

In this case A is a deformation of the graded category (A, m_2) .

Theorem (Kadeishvili'80, Lefèvre-Hasegawa'03)

Any A_{∞} -category A over a field k is quasi-isomorphic to a minimal one, defined over H^*A .

The Hochschild complex $C^{*,*}(A)$ on a graded category A is

 $C^{n,r}(\mathcal{A}) = \bigoplus_{X_0,\ldots,X_n \text{ in } \mathcal{A}} \operatorname{Hom}^r(\mathcal{A}(X_{n-1},X_n) \otimes \cdots \otimes \mathcal{A}(X_0,X_1),\mathcal{A}(X_0,X_n)).$

with differential ∂ of degree (1,0).

The shifted Hochschild complex $C^{*+1,*}(\mathcal{A})$ is a DGLA with the Gerstenhaber bracket.

イロン 不得 とくほ とくほう 一日

The Hochschild complex $C^{*,*}(A)$ on a graded category A is

$$C^{n,r}(\mathcal{A}) = \bigoplus_{X_0,\ldots,X_n \text{ in } \mathcal{A}} \operatorname{Hom}^r(\mathcal{A}(X_{n-1},X_n) \otimes \cdots \otimes \mathcal{A}(X_0,X_1),\mathcal{A}(X_0,X_n)).$$

with differential ∂ of degree (1,0).

The shifted Hochschild complex $C^{*+1,*}(A)$ is a DGLA with the Gerstenhaber bracket.

ヘロト 人間 とくほ とくほ とう

3

Minimal A_{∞} -categories

A minimal A_{∞} -structure on a graded category \mathcal{A} is a Hochschild cochain of total degree 2

$$m = m_3 + m_4 + \cdots + m_n + \cdots$$

concentrated in horizontal degrees \geq 3 which is a solution of the Maurer–Cartan equation,

$$\partial(m)+\frac{1}{2}[m,m] = 0.$$

This equation can be decomposed as

$$\partial(m_n) + \frac{1}{2} \sum_{p+q=n+2} [m_p, m_q] = 0, \quad n \ge 3,$$

in particular m_3 is a cocycle, $\{m_3\} \in HH^{3,-1}(\mathcal{A})$.

Minimal A_{∞} -categories

A minimal A_{∞} -structure on a graded category \mathcal{A} is a Hochschild cochain of total degree 2

$$m = m_3 + m_4 + \cdots + m_n + \cdots$$

concentrated in horizontal degrees \geq 3 which is a solution of the Maurer–Cartan equation,

$$\partial(m)+\frac{1}{2}[m,m] = 0.$$

This equation can be decomposed as

$$\partial(m_n) + \frac{1}{2} \sum_{p+q=n+2} [m_p, m_q] = 0, \quad n \ge 3,$$

in particular m_3 is a cocycle, $\{m_3\} \in HH^{3,-1}(\mathcal{A})$.

A minimal A_n -structure on a graded category A is given by Hochschild cochains $m_3, \ldots, m_i, \ldots, m_n$ of bidegree (i, 2 - i) such that

$$\partial(m_i) + \frac{1}{2} \sum_{p+q=i+2} [m_p, m_q] = 0, \quad n \ge i \ge 3.$$

An A_3 -structure on a graded category is just a 3-cocycle m_3 , $\{m_3\} \in HH^{3,-1}(\mathcal{A})$.

An A_{∞} -structure is a sequence of cochains m_3, \ldots, m_n, \ldots such that m_3, \ldots, m_n is an A_n -structure for all $n \ge 3$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A minimal A_n -structure on a graded category A is given by Hochschild cochains $m_3, \ldots, m_i, \ldots, m_n$ of bidegree (i, 2 - i) such that

$$\partial(m_i) + \frac{1}{2} \sum_{p+q=i+2} [m_p, m_q] = 0, \quad n \ge i \ge 3.$$

An A_3 -structure on a graded category is just a 3-cocycle m_3 , $\{m_3\} \in HH^{3,-1}(\mathcal{A})$.

An A_{∞} -structure is a sequence of cochains m_3, \ldots, m_n, \ldots such that m_3, \ldots, m_n is an A_n -structure for all $n \ge 3$.

《曰》《御》《臣》《臣》 [臣]

A minimal A_n -structure on a graded category A is given by Hochschild cochains $m_3, \ldots, m_i, \ldots, m_n$ of bidegree (i, 2 - i) such that

$$\partial(m_i) + \frac{1}{2} \sum_{p+q=i+2} [m_p, m_q] = 0, \quad n \ge i \ge 3.$$

An A_3 -structure on a graded category is just a 3-cocycle m_3 , $\{m_3\} \in HH^{3,-1}(\mathcal{A})$.

An A_{∞} -structure is a sequence of cochains m_3, \ldots, m_n, \ldots such that m_3, \ldots, m_n is an A_n -structure for all $n \ge 3$.

ヘロン 人間 とくほ とくほ とう

э.

Pretriangulated A_{∞} -categories

The derived category D(A) of an A_{∞} -category A is the homotopy category of right A-modules, which is triangulated in a natural way. The inclusion of free modules induces a functor

$$egin{array}{ccc} {\cal H}^0{\cal A} & \longrightarrow & {\cal D}({\cal A}) \ X & \mapsto & {\cal A}(\,\cdot\,,X). \end{array}$$

Definition

An A_{∞} -category \mathcal{A} is pretriangulated if $H^0\mathcal{A}$ is a triangulated subcategory of $D(\mathcal{A})$.

If \mathcal{A} is pretriangulated and $\mathcal{T} = H^0(\mathcal{A})$ then

 $H^n\mathcal{A}(X,Y) \cong \mathcal{T}(X,\Sigma^nY), \quad n\in\mathbb{Z},$

where Σ is the suspension in T.

・ロト ・ 理 ト ・ ヨ ト ・

Pretriangulated A_{∞} -categories

The derived category D(A) of an A_{∞} -category A is the homotopy category of right A-modules, which is triangulated in a natural way. The inclusion of free modules induces a functor

$$egin{array}{ccc} {\cal H}^0{\cal A} & \longrightarrow & {\cal D}({\cal A}) \ X & \mapsto & {\cal A}(\,\cdot\,,X). \end{array}$$

Definition

An A_{∞} -category \mathcal{A} is pretriangulated if $H^0\mathcal{A}$ is a triangulated subcategory of $D(\mathcal{A})$.

If \mathcal{A} is pretriangulated and $\mathcal{T} = H^0(\mathcal{A})$ then

1

$$H^n \mathcal{A}(X, Y) \cong \mathcal{T}(X, \Sigma^n Y), \quad n \in \mathbb{Z},$$

where Σ is the suspension in T.

・ロト ・ 理 ト ・ ヨ ト ・

Pretriangulated A_{∞} -categories

The derived category D(A) of an A_{∞} -category A is the homotopy category of right A-modules, which is triangulated in a natural way. The inclusion of free modules induces a functor

$$egin{array}{ccc} {\cal H}^0{\cal A} & \longrightarrow & {\cal D}({\cal A}) \ X & \mapsto & {\cal A}(\,\cdot\,,X). \end{array}$$

Definition

An A_{∞} -category A is pretriangulated if H^0A is a triangulated subcategory of D(A).

If \mathcal{A} is pretriangulated and $\mathcal{T} = H^0(\mathcal{A})$ then

$$H^n\mathcal{A}(X,Y) \cong \mathcal{T}(X,\Sigma^nY), \quad n\in\mathbb{Z},$$

where Σ is the suspension in T.

ヘロア ヘビア ヘビア・

Let T be a triangulated category over k with suspension Σ .

When is T algebraic?

Translation: For *k* a field, we wonder about the existence of a minimal pretriangulated A_{∞} -category $\mathcal{A} = (\mathcal{T}_{\Sigma}, m)$ on the graded category \mathcal{T}_{Σ} with the same objects as \mathcal{T} and morphisms

$$\mathcal{T}_{\Sigma}(X, Y) = \bigoplus_{n \in \mathbb{Z}} \mathcal{T}(X, \Sigma^n Y),$$

such that \mathcal{T} embeds as a triangulated subcategory of $D(\mathcal{A})$. For this we have to find m_3, m_4, \ldots adequately.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Let T be a triangulated category over k with suspension Σ .

When is ${\mathcal T}$ algebraic?

Translation: For *k* a field, we wonder about the existence of a minimal pretriangulated A_{∞} -category $\mathcal{A} = (\mathcal{T}_{\Sigma}, m)$ on the graded category \mathcal{T}_{Σ} with the same objects as \mathcal{T} and morphisms

$$\mathcal{T}_{\Sigma}(X, Y) = \bigoplus_{n \in \mathbb{Z}} \mathcal{T}(X, \Sigma^n Y),$$

such that \mathcal{T} embeds as a triangulated subcategory of $D(\mathcal{A})$. For this we have to find m_3, m_4, \ldots adequately.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Let T be a triangulated category over k with suspension Σ .

When is \mathcal{T} algebraic?

Translation: For *k* a field, we wonder about the existence of a minimal pretriangulated A_{∞} -category $\mathcal{A} = (\mathcal{T}_{\Sigma}, m)$ on the graded category \mathcal{T}_{Σ} with the same objects as \mathcal{T} and morphisms

$$\mathcal{T}_{\Sigma}(X, Y) = \bigoplus_{n \in \mathbb{Z}} \mathcal{T}(X, \Sigma^n Y),$$

such that \mathcal{T} embeds as a triangulated subcategory of $D(\mathcal{A})$. For this we have to find m_3, m_4, \ldots adequately.

・ 同 ト ・ ヨ ト ・ ヨ ト …
Let T be a triangulated category over k with suspension Σ .

When is ${\mathcal T}$ algebraic?

Translation: For *k* a field, we wonder about the existence of a minimal pretriangulated A_{∞} -category $\mathcal{A} = (\mathcal{T}_{\Sigma}, m)$ on the graded category \mathcal{T}_{Σ} with the same objects as \mathcal{T} and morphisms

$$\mathcal{T}_{\Sigma}(X, Y) = \bigoplus_{n \in \mathbb{Z}} \mathcal{T}(X, \Sigma^n Y),$$

such that \mathcal{T} embeds as a triangulated subcategory of $D(\mathcal{A})$. For this we have to find m_3, m_4, \ldots adequately.

(雪) (ヨ) (ヨ)

Secondary compositions

A secondary composition or Massey product or Toda bracket in an additive graded category C is an operation which sends composable homogeneous morphisms

$$Z \stackrel{h}{\longrightarrow} Y \stackrel{g}{\longrightarrow} X \stackrel{f}{\longrightarrow} W,$$

with fg = 0 and gh = 0, to

$$\langle f, g, h \rangle \in \frac{\mathcal{C}(Z, W)}{f \cdot \mathcal{C}(Z, X) + \mathcal{C}(Y, W) \cdot h}$$

such that

$$\deg(\langle f, g, h \rangle) = \deg(f) + \deg(g) + \deg(h) - 1,$$

 $\langle f, g, h \rangle \cdot i \subset \langle f, g, h \cdot i \rangle \subset \langle f, g \cdot h, i \rangle \supset \langle f \cdot g, h, i \rangle \supset (-1)^{\deg(f)} f \cdot \langle g, h, i \rangle$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → の Q ()

Secondary compositions

A secondary composition or Massey product or Toda bracket in an additive graded category C is an operation which sends composable homogeneous morphisms

$$Z \stackrel{h}{\longrightarrow} Y \stackrel{g}{\longrightarrow} X \stackrel{f}{\longrightarrow} W,$$

with fg = 0 and gh = 0, to

$$\langle f, g, h \rangle \in \frac{\mathcal{C}(Z, W)}{f \cdot \mathcal{C}(Z, X) + \mathcal{C}(Y, W) \cdot h}$$

such that

$$\deg(\langle f,g,h\rangle) = \deg(f) + \deg(g) + \deg(h) - 1,$$

 $\langle f, g, h \rangle \cdot i \subset \langle f, g, h \cdot i \rangle \subset \langle f, g \cdot h, i \rangle \supset \langle f \cdot g, h, i \rangle \supset (-1)^{\deg(f)} f \cdot \langle g, h, i \rangle.$

The graded category T_{Σ} carries a secondary composition induced by the triangulated structure on T. Given

 $Z \xrightarrow{h} Y \xrightarrow{g} X \xrightarrow{f} W$

exact

イロト イポト イヨト イヨト 三日

This extends canonically to a secondary composition in T_{Σ} .

$$Z \xrightarrow{h} Y \xrightarrow{g} X \xrightarrow{f} W$$
 in \mathcal{T}

exact

(雪) (ヨ) (ヨ)

This extends canonically to a secondary composition in T_{Σ} .

The graded category T_{Σ} carries a secondary composition induced by the triangulated structure on T. Given

This extends canonically to a secondary composition in T_{Σ} .

This extends canonically to a secondary composition in \mathcal{T}_{Σ} .

ヘロト 人間 とくほ とくほ とう

The graded category T_{Σ} carries a secondary composition induced by the triangulated structure on T. Given

This extends canonically to a secondary composition in \mathcal{T}_{Σ} .

The graded category T_{Σ} carries a secondary composition induced by the triangulated structure on T. Given

This extends canonically to a secondary composition in T_{Σ} .

This extends canonically to a secondary composition in \mathcal{T}_{Σ} .

This extends canonically to a secondary composition in \mathcal{T}_{Σ} .

(雪) (ヨ) (ヨ)

This extends canonically to a secondary composition in \mathcal{T}_{Σ} .

イロト 不得 とくほ とくほ とうほ

This extends canonically to a secondary composition in T_{Σ} .

(個) (日) (日) (日)

Conversely, this secondary composition determines the exact triangles.

Proposition

A triangle $X \xrightarrow{f} Y \xrightarrow{i} C \xrightarrow{q} \Sigma X$ is exact in \mathcal{T} if and only if

 $\mathcal{T}(U,X) \to \mathcal{T}(U,Y) \to \mathcal{T}(U,C) \to \mathcal{T}(U,\Sigma X) \to \mathcal{T}(U,\Sigma Y)$

is exact for any object U in T and $1_X \in \langle q, i, f \rangle \subset T(X, X)$.

Using [Heller'68] one can actually determine the subset

{Puppe triangulated structures in \mathcal{T} } \subseteq {Secondary compositions in \mathcal{T}_{Σ} }

which is the intersection of an 'open' and a 'closed' subset.

ヘロト ヘアト ヘビト ヘビト

Conversely, this secondary composition determines the exact triangles.

Proposition

A triangle $X \xrightarrow{f} Y \xrightarrow{i} C \xrightarrow{q} \Sigma X$ is exact in \mathcal{T} if and only if

 $\mathcal{T}(U,X) \to \mathcal{T}(U,Y) \to \mathcal{T}(U,C) \to \mathcal{T}(U,\Sigma X) \to \mathcal{T}(U,\Sigma Y)$

is exact for any object U in T and $1_X \in \langle q, i, f \rangle \subset T(X, X)$.

Using [Heller'68] one can actually determine the subset

{Puppe triangulated structures in \mathcal{T} } \subseteq {Secondary compositions in \mathcal{T}_{Σ} }

which is the intersection of an 'open' and a 'closed' subset.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Definition

A finitely presented right T-module is a functor $M: T^{op} \to k$ -Mod which fits into an exact sequence

$$\mathcal{T}(\,\cdot\,,X) \to \mathcal{T}(\,\cdot\,,Y) \to M \to 0$$

Theorem (Freyd'66)

The category mod- T of finitely presented right T -modules is a Frobenius abelian category.

ヘロト ヘ戸ト ヘヨト ヘヨト

Definition

A finitely presented right T-module is a functor $M: T^{op} \to k$ -Mod which fits into an exact sequence

$$\mathcal{T}(\,\cdot\,,X) \to \mathcal{T}(\,\cdot\,,Y) \to M \to 0$$

Theorem (Freyd'66)

The category mod- T of finitely presented right T-modules is a Frobenius abelian category.

프 🖌 🛪 프 🛌

The suspension functor in $\ensuremath{\mathcal{T}}$ extends uniquely to an exact equivalence

 $\Sigma\colon \operatorname{mod-} \mathcal{T} \longrightarrow \operatorname{mod-} \mathcal{T}.$

We can therefore define a graded category mod- \mathcal{T}_{Σ} with the same objects as mod- \mathcal{T} and graded morphisms

$$\operatorname{Hom}_{\mathcal{T}}^*(M,N) = \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(M,\Sigma^n N),$$

and also bigraded ext's $Ext_T^{*,*}$.

Proposition

 $\{$ Secondary compositions in $\mathcal{T}_{\Sigma}\} \cong HH^{0,-1}($ mod- $\mathcal{T}_{\Sigma}, Ext_{\mathcal{T}}^{3,*}).$

skip proof

ヘロン ヘアン ヘビン ヘビン

The suspension functor in \mathcal{T} extends uniquely to an exact equivalence

 $\Sigma\colon \operatorname{\mathsf{mod-}}\nolimits \mathcal{T} \longrightarrow \operatorname{\mathsf{mod-}}\nolimits \mathcal{T}.$

We can therefore define a graded category mod- \mathcal{T}_Σ with the same objects as mod- \mathcal{T} and graded morphisms

$$\operatorname{Hom}_{\mathcal{T}}^*(M,N) = \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(M,\Sigma^n N),$$

and also bigraded ext's $Ext_{T}^{*,*}$.

Proposition

 $\{$ Secondary compositions in $\mathcal{T}_{\Sigma}\} \cong HH^{0,-1}($ mod- $\mathcal{T}_{\Sigma}, Ext_{\mathcal{T}}^{3,*}).$

skip proof

・ロト ・ 理 ト ・ ヨ ト ・

The suspension functor in \mathcal{T} extends uniquely to an exact equivalence

 $\Sigma\colon \operatorname{\mathsf{mod-}}\nolimits \mathcal{T} \longrightarrow \operatorname{\mathsf{mod-}}\nolimits \mathcal{T}.$

We can therefore define a graded category mod- \mathcal{T}_Σ with the same objects as mod- $\mathcal T$ and graded morphisms

$$\operatorname{Hom}_{\mathcal{T}}^*(M,N) = \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(M,\Sigma^n N),$$

and also bigraded ext's $Ext_{T}^{*,*}$.

Proposition

 $\{\text{Secondary compositions in } \mathcal{T}_{\Sigma}\} \cong HH^{0,-1}(\text{mod-} \mathcal{T}_{\Sigma}, \text{Ext}_{\mathcal{T}}^{3,*}).$

skip proof

ヘロト 人間 とくほ とくほ とう

Idea of the proof.

Suppose we have a secondary composition $\langle \cdot, \cdot, \cdot \rangle$. We now define an element in $\kappa \in HH^{0,-1}(\text{mod-} \mathcal{T}_{\Sigma}, \text{Ext}^{3,*}_{\mathcal{T}})$. Let *M* be in mod- \mathcal{T} ,

 $\mathcal{T}(\,\cdot\,,X) \xrightarrow{\mathcal{T}(\,\cdot\,,f)} \mathcal{T}(\,\cdot\,,Y) \stackrel{p}{\twoheadrightarrow} M,$

$\Sigma^{-1} Y \xrightarrow{i} C \xrightarrow{q} X \xrightarrow{f} Y$, exact.

Idea of the proof.

Suppose we have a secondary composition $\langle \cdot, \cdot, \cdot \rangle$. We now define an element in $\kappa \in HH^{0,-1}(\text{mod-}\mathcal{T}_{\Sigma}, \text{Ext}^{3,*}_{\mathcal{T}})$. Let *M* be in mod- \mathcal{T} ,

$$\mathcal{T}(\,\cdot\,,X) \xrightarrow{\mathcal{T}(\,\cdot\,,f)} \mathcal{T}(\,\cdot\,,Y) \stackrel{p}{\twoheadrightarrow} M,$$

$$\Sigma^{-1} Y \xrightarrow{i} C \xrightarrow{q} X \xrightarrow{f} Y$$
, exact.

Idea of the proof.

Suppose we have a secondary composition $\langle \cdot, \cdot, \cdot \rangle$. We now define an element in $\kappa \in HH^{0,-1}(\text{mod-}\mathcal{T}_{\Sigma}, \text{Ext}^{3,*}_{\mathcal{T}})$. Let *M* be in mod- \mathcal{T} ,

$$\mathcal{T}(\,\cdot\,,X) \xrightarrow{\mathcal{T}(\,\cdot\,,f)} \mathcal{T}(\,\cdot\,,Y) \overset{p}{\twoheadrightarrow} M,$$

$$\Sigma^{-1} Y \xrightarrow{i} C \xrightarrow{q} X \xrightarrow{f} Y$$
, exact.

Idea of the proof.

Suppose we have a secondary composition $\langle \cdot, \cdot, \cdot \rangle$. We now define an element in $\kappa \in HH^{0,-1}(\text{mod-} \mathcal{T}_{\Sigma}, \text{Ext}^{3,*}_{\mathcal{T}})$. Let *M* be in mod- \mathcal{T} ,

$$\mathcal{T}(\,\cdot\,,\Sigma^{-1}\,Y) \xrightarrow{\mathcal{T}(\,\cdot\,,i)} \mathcal{T}(\,\cdot\,,C) \xrightarrow{\mathcal{T}(\,\cdot\,,q)} \mathcal{T}(\,\cdot\,,X) \xrightarrow{\mathcal{T}(\,\cdot\,,f)} \mathcal{T}(\,\cdot\,,Y) \xrightarrow{p} M$$

$$\Sigma^{-1} Y \xrightarrow{i} C \xrightarrow{q} X \xrightarrow{f} Y$$
, exact.

Idea of the proof.

Suppose we have a secondary composition $\langle \cdot, \cdot, \cdot \rangle$. We now define an element in $\kappa \in HH^{0,-1}(\text{mod-}\mathcal{T}_{\Sigma}, \text{Ext}^{3,*}_{\mathcal{T}})$. Let *M* be in mod- \mathcal{T} ,

Idea of the proof.

Suppose we have a secondary composition $\langle \cdot, \cdot, \cdot \rangle$. We now define an element in $\kappa \in HH^{0,-1}(\text{mod-} \mathcal{T}_{\Sigma}, \text{Ext}^{3,*}_{\mathcal{T}})$. Let *M* be in mod- \mathcal{T} ,

$$\begin{aligned} \mathcal{T}(\cdot, \Sigma^{-1}Y) &\xrightarrow{\mathcal{T}(\cdot, i)} \mathcal{T}(\cdot, C) \xrightarrow{\mathcal{T}(\cdot, q)} \mathcal{T}(\cdot, X) \xrightarrow{\mathcal{T}(\cdot, f)} \mathcal{T}(\cdot, Y) \stackrel{p}{\twoheadrightarrow} M, \\ \mathcal{T}(\cdot, \langle f, q, i \rangle) \ni & \downarrow \\ & \mathcal{T}(\cdot, \Sigma^{-1}Y) \xrightarrow{\Sigma^{-1}p} \Sigma^{-1}M \\ & \Sigma^{-1}Y \xrightarrow{i} C \xrightarrow{q} X \xrightarrow{f} Y, \quad \text{exact.} \end{aligned}$$

Idea of the proof.

Suppose we have a secondary composition $\langle \cdot, \cdot, \cdot \rangle$. We now define an element in $\kappa \in HH^{0,-1}(\text{mod-} \mathcal{T}_{\Sigma}, \text{Ext}_{\mathcal{T}}^{3,*})$. Let *M* be in mod- \mathcal{T} ,

The first obstructions

Theorem

For k a field and any $r \in \mathbb{Z}$ there is a spectral sequence

$$E_2^{p,q} = HH^{p,r}(\mathsf{mod} extsf{-} \mathcal{T}_{\Sigma},\mathsf{Ext}_{\mathcal{T}}^{q,*}) \Longrightarrow HH^{p+q,r}(\mathcal{T}_{\Sigma}).$$

If $T = H^0 A$ for some pretriangulated minimal A_{∞} -category A then the edge homomorphism for r = -1 satisfies

$$\begin{array}{rcl} H\!H^{3,-1}(\mathcal{T}_{\Sigma}) & \longrightarrow & H\!H^{0,-1}(\text{mod-}\,\mathcal{T}_{\Sigma},\text{Ext}_{\mathcal{T}}^{3,*}) \ = & E_2^{0,3} \\ & \{m_3\} & \mapsto & \langle\cdot,\cdot,\cdot\rangle. \end{array}$$

Corollary

If T is algebraic over a field k then the secondary composition $\langle \cdot, \cdot, \cdot \rangle$ in T_{Σ} is a permanent cycle in the previous spectral sequence.

ヘロト 人間 ト くほ ト くほ トー

э

The first obstructions

Theorem

For k a field and any $r \in \mathbb{Z}$ there is a spectral sequence

$$E_2^{p,q} = HH^{p,r}(\mathsf{mod}_{-}\mathcal{T}_{\Sigma},\mathsf{Ext}_{\mathcal{T}}^{q,*}) \Longrightarrow HH^{p+q,r}(\mathcal{T}_{\Sigma}).$$

If $T = H^0 A$ for some pretriangulated minimal A_∞ -category A then the edge homomorphism for r = -1 satisfies

$$\begin{array}{rcl} \textit{HH}^{3,-1}(\mathcal{T}_{\Sigma}) & \longrightarrow & \textit{HH}^{0,-1}(\textit{mod-}\mathcal{T}_{\Sigma},\textit{Ext}_{\mathcal{T}}^{3,*}) \ = \ \textit{E}_{2}^{0,3} \\ \{\textit{m}_{3}\} & \mapsto & \langle\cdot,\cdot,\cdot\rangle. \end{array}$$

Corollary

If T is algebraic over a field k then the secondary composition $\langle \cdot, \cdot, \cdot \rangle$ in T_{Σ} is a permanent cycle in the previous spectral sequence.

ヘロト 人間 ト くほ ト くほ トー

э

The first obstructions

Theorem

For k a field and any $r \in \mathbb{Z}$ there is a spectral sequence

$$E_2^{p,q} = HH^{p,r}(\mathsf{mod} extsf{-}\mathcal{T}_\Sigma,\mathsf{Ext}_\mathcal{T}^{q,*}) \Longrightarrow HH^{p+q,r}(\mathcal{T}_\Sigma).$$

If $T = H^0 A$ for some pretriangulated minimal A_{∞} -category A then the edge homomorphism for r = -1 satisfies

$$\begin{array}{rcl} \textit{HH}^{3,-1}(\mathcal{T}_{\Sigma}) & \longrightarrow & \textit{HH}^{0,-1}(\textit{mod-}\mathcal{T}_{\Sigma},\textit{Ext}_{\mathcal{T}}^{3,*}) = \textit{E}_{2}^{0,3} \\ \{m_{3}\} & \mapsto & \langle\cdot,\cdot,\cdot\rangle. \end{array}$$

Corollary

If \mathcal{T} is algebraic over a field k then the secondary composition $\langle \cdot, \cdot, \cdot \rangle$ in \mathcal{T}_{Σ} is a permanent cycle in the previous spectral sequence.

・ロン ・四と ・ ヨン・

ъ

Conversely, if $\langle\cdot,\cdot,\cdot\rangle$ is a permanent cycle we can choose a (3, -1)-cocycle m_3 such that

$$\{m_3\}\mapsto \langle\cdot,\cdot,\cdot\rangle$$

through the edge homomorphism.

Such a choice yields an A_3 -structure on \mathcal{T}_{Σ} that we can try to extend to an A_{∞} -structure.

ヘロト 人間 とくほ とくほ とう

ъ

Conversely, if $\langle \cdot, \cdot, \cdot \rangle$ is a permanent cycle we can choose a (3, -1)-cocycle m_3 such that

$$\{m_3\}\mapsto \langle\cdot,\cdot,\cdot\rangle$$

through the edge homomorphism.

Such a choice yields an A_3 -structure on T_{Σ} that we can try to extend to an A_{∞} -structure.

(雪) (ヨ) (ヨ)

Therefore the first obstructions for the existence of an $A_\infty\text{-enhancement}$ are

$$\begin{array}{rcl} d_2(\langle\cdot,\cdot,\cdot\rangle) &\in & E_2^{2,2} = HH^{2,-1}(\text{mod-}\,\mathcal{T}_{\Sigma},\text{Ext}_{\mathcal{T}}^{2,*}), \ \text{if} = 0\\ \text{then} & d_3(\langle\cdot,\cdot,\cdot\rangle) &\in & E_3^{3,1}, \ \text{if} = 0\\ \text{then} & d_4(\langle\cdot,\cdot,\cdot\rangle) &\in & E_4^{4,0} \twoheadleftarrow HH^{4,-1}(\text{mod-}\,\mathcal{T}_{\Sigma},\text{Hom}_{\mathcal{T}}^*), \ \text{if} = 0 \end{array}$$

then there is an A_3 -enhancement of T_{Σ} .

Therefore the first obstructions for the existence of an A_{∞} -enhancement are

$$\begin{array}{rcl} d_2(\langle\cdot,\cdot,\cdot\rangle) &\in & E_2^{2,2} = HH^{2,-1}(\text{mod-}\,\mathcal{T}_{\Sigma},\text{Ext}_{\mathcal{T}}^{2,*}), \ \text{if} = 0\\ \text{then} & d_3(\langle\cdot,\cdot,\cdot\rangle) &\in & E_3^{3,1}, \ \text{if} = 0\\ \text{then} & d_4(\langle\cdot,\cdot,\cdot\rangle) &\in & E_4^{4,0} \twoheadleftarrow HH^{4,-1}(\text{mod-}\,\mathcal{T}_{\Sigma},\text{Hom}_{\mathcal{T}}^*), \ \text{if} = 0 \end{array}$$

then there is an A_3 -enhancement of \mathcal{T}_{Σ} .

Therefore the first obstructions for the existence of an A_{∞} -enhancement are

$$\begin{array}{rcl} d_2(\langle\cdot,\cdot,\cdot\rangle) &\in & E_2^{2,2} = HH^{2,-1}(\text{mod-}\,\mathcal{T}_{\Sigma},\text{Ext}_{\mathcal{T}}^{2,*}), \ \text{if} = 0\\ \text{then} \ d_3(\langle\cdot,\cdot,\cdot\rangle) &\in & E_3^{3,1}, \ \text{if} = 0\\ \text{then} \ d_4(\langle\cdot,\cdot,\cdot\rangle) &\in & E_4^{4,0} \twoheadleftarrow HH^{4,-1}(\text{mod-}\,\mathcal{T}_{\Sigma},\text{Hom}_{\mathcal{T}}^*), \ \text{if} = 0 \end{array}$$

then there is an A_3 -enhancement of \mathcal{T}_{Σ} .

Therefore the first obstructions for the existence of an A_{∞} -enhancement are

$$\begin{array}{rcl} & d_2(\langle\cdot,\cdot,\cdot\rangle) & \in & E_2^{2,2} = \textit{HH}^{2,-1}(\textit{mod-}\mathcal{T}_{\Sigma},\textit{Ext}_{\mathcal{T}}^{2,*}), \ \text{if} = 0 \\ & \text{then} \ d_3(\langle\cdot,\cdot,\cdot\rangle) & \in & E_3^{3,1}, \ \text{if} = 0 \\ & \text{then} \ d_4(\langle\cdot,\cdot,\cdot\rangle) & \in & E_4^{4,0} \twoheadleftarrow \textit{HH}^{4,-1}(\textit{mod-}\mathcal{T}_{\Sigma},\textit{Hom}_{\mathcal{T}}^*), \ \text{if} = 0 \end{array}$$

then there is an A_3 -enhancement of T_{Σ} .

э

프 🖌 🛪 프 🛌
Higher obstructions

Suppose that we have enhanced T_{Σ} to an A_{n-1} -category, n > 3, in a compatible way with the triangulated structure of T. Then

$$\left\{\frac{1}{2}\sum_{p+q=n+2}[m_p,m_q]\right\}\in HH^{n+1,2-n}(\mathcal{T}_{\Sigma}).$$

If this cohomology class vanishes then any trivialising cochain m_n yields an extension to an A_n -category since

$$\partial(m_n) + \frac{1}{2} \sum_{p+q=n+2} [m_p, m_q] = 0,$$

and conversely.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Higher obstructions

Suppose that we have enhanced T_{Σ} to an A_{n-1} -category, n > 3, in a compatible way with the triangulated structure of T. Then

$$\left\{\frac{1}{2}\sum_{p+q=n+2}[m_p,m_q]\right\}\in HH^{n+1,2-n}(\mathcal{T}_{\Sigma}).$$

If this cohomology class vanishes then any trivialising cochain m_n yields an extension to an A_n -category since

$$\partial(m_n) + \frac{1}{2} \sum_{p+q=n+2} [m_p, m_q] = 0,$$

and conversely.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Suppose that we have enhanced T_{Σ} to an A_{n-1} -category, n > 3, in a compatible way with the triangulated structure of T. Then

$$\left\{\frac{1}{2}\sum_{p+q=n+2}[m_p,m_q]\right\}\in HH^{n+1,2-n}(\mathcal{T}_{\Sigma}).$$

If this cohomology class vanishes then any trivialising cochain m_n yields an extension to an A_n -category since

$$\partial(m_n) + \frac{1}{2} \sum_{p+q=n+2} [m_p, m_q] = 0,$$

and conversely.

The first of these higher obstructions is as follows.

Example

For n = 4, if $(\mathcal{T}_{\Sigma}, m_3)$ is an A_3 -category, the obstruction for the existence of an A_4 -enhancement is obtained from $\{m_3\} \in HH^{3,-1}(\mathcal{T}_{\Sigma})$,

$$\frac{1}{2}[\{m_3\},\{m_3\}] \in HH^{5,-2}(\mathcal{T}_{\Sigma}).$$

Let $\mathcal{T} =$ finitely generated free modules over $k[\varepsilon]/(\varepsilon^2)$ and Σ is the identity on objects and such that $\Sigma(\varepsilon) = -\varepsilon$.

{Secondary compositions in \mathcal{T}_{Σ} } \cong $HH^{0,-1}(\text{mod-}\mathcal{T}_{\Sigma},\text{Ext}_{\mathcal{T}}^{3,*}) \cong k$.

Each $x \in k^{\times}$ corresponds to the secondary composition of an algebraic triangulated structure on \mathcal{T} with exact triangle

$$k[\varepsilon]/(\varepsilon^2) \xrightarrow{\varepsilon} k[\varepsilon]/(\varepsilon^2) \xrightarrow{\varepsilon} k[\varepsilon]/(\varepsilon^2) \xrightarrow{X \cdot \varepsilon} k[\varepsilon]/(\varepsilon^2).$$

And $0 \in k$ does not correspond to any triangulated structure.

Let $\mathcal{T} =$ finitely generated free modules over $k[\varepsilon]/(\varepsilon^2)$ and Σ is the identity on objects and such that $\Sigma(\varepsilon) = -\varepsilon$.

{Secondary compositions in \mathcal{T}_{Σ} } \cong $HH^{0,-1}(\text{mod-}\mathcal{T}_{\Sigma}, \text{Ext}_{\mathcal{T}}^{3,*}) \cong k$.

Each $x \in k^{\times}$ corresponds to the secondary composition of an algebraic triangulated structure on \mathcal{T} with exact triangle

$$k[\varepsilon]/(\varepsilon^2) \xrightarrow{\varepsilon} k[\varepsilon]/(\varepsilon^2) \xrightarrow{\varepsilon} k[\varepsilon]/(\varepsilon^2) \xrightarrow{X \cdot \varepsilon} k[\varepsilon]/(\varepsilon^2).$$

And $0 \in k$ does not correspond to any triangulated structure.

Let $\mathcal{T} =$ finitely generated free modules over $k[\varepsilon]/(\varepsilon^2)$ and Σ is the identity on objects and such that $\Sigma(\varepsilon) = -\varepsilon$.

{Secondary compositions in \mathcal{T}_{Σ} } \cong $HH^{0,-1}(\text{mod-}\mathcal{T}_{\Sigma}, \text{Ext}_{\mathcal{T}}^{3,*}) \cong k$.

Each $x \in k^{\times}$ corresponds to the secondary composition of an algebraic triangulated structure on \mathcal{T} with exact triangle

$$k[\varepsilon]/(\varepsilon^2) \stackrel{\varepsilon}{\longrightarrow} k[\varepsilon]/(\varepsilon^2) \stackrel{\varepsilon}{\longrightarrow} k[\varepsilon]/(\varepsilon^2) \stackrel{X\cdot\varepsilon}{\longrightarrow} k[\varepsilon]/(\varepsilon^2).$$

And $0 \in k$ does not correspond to any triangulated structure.

The example of dual numbers

The edge homomorphism is

$$\begin{array}{rcl} H\!H^{3,-1}(\mathcal{T}_{\Sigma}) \cong k \cdot \alpha \oplus k \cdot \beta & \longrightarrow & H\!H^{0,-1}(\text{mod-}\,\mathcal{T}_{\Sigma}, \mathsf{Ext}_{\mathcal{T}}^{3,*}) \cong k, \\ & \alpha & \mapsto & 1, \\ & \beta & \mapsto & 0, \\ & y \in k, \quad x \cdot \alpha + y \cdot \beta & \mapsto & x \neq 0. \end{array}$$

Let $\{m_3\} = x \cdot \alpha + y \cdot \beta$. The obstruction to enhance $(\mathcal{T}_{\Sigma}, m_3)$ to an A_4 -category is

$$\begin{array}{rcl} \frac{1}{2}[x \cdot \alpha + y \cdot \beta, x \cdot \alpha + y \cdot \beta] &=& xy[\alpha, \beta] + \frac{1}{2}y^2[\beta, \beta], \\ &\in & HH^{5, -2}(\mathcal{T}_{\Sigma}) &\cong & k \cdot [\alpha, \beta] \oplus k \cdot [\beta, \beta], \quad [\alpha, \alpha] = \mathbf{0}, \end{array}$$

so the obstruction vanishes if and only if y = 0. Tate Amiot skip

The example of dual numbers

The edge homomorphism is

$$\begin{array}{rcl} H\!H^{3,-1}(\mathcal{T}_{\Sigma}) \cong k \cdot \alpha \oplus k \cdot \beta & \longrightarrow & H\!H^{0,-1}(\text{mod-}\,\mathcal{T}_{\Sigma}, \mathsf{Ext}_{\mathcal{T}}^{3,*}) \cong k, \\ & \alpha & \mapsto & 1, \\ & \beta & \mapsto & 0, \\ & y \in k, \quad x \cdot \alpha + y \cdot \beta & \mapsto & x \neq 0. \end{array}$$

Let $\{m_3\} = x \cdot \alpha + y \cdot \beta$. The obstruction to enhance $(\mathcal{T}_{\Sigma}, m_3)$ to an A_4 -category is

$$\begin{array}{rcl} \frac{1}{2}[x \cdot \alpha + y \cdot \beta, x \cdot \alpha + y \cdot \beta] &=& xy[\alpha, \beta] + \frac{1}{2}y^2[\beta, \beta], \\ &\in & HH^{5, -2}(\mathcal{T}_{\Sigma}) &\cong & k \cdot [\alpha, \beta] \oplus k \cdot [\beta, \beta], \quad [\alpha, \alpha] = \mathbf{0}, \end{array}$$

so the obstruction vanishes if and only if y = 0. Tate Amiot skip

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

$$\begin{array}{rcl} H\!H^{3,-1}(\mathcal{T}_{\Sigma}) \cong k \cdot \alpha \oplus k \cdot \beta & \longrightarrow & H\!H^{0,-1}(\text{mod-} \mathcal{T}_{\Sigma}, \mathsf{Ext}_{\mathcal{T}}^{3,*}) \cong k, \\ & \alpha & \mapsto & 1, \\ & \beta & \mapsto & 0, \\ & y \in k, \quad x \cdot \alpha + y \cdot \beta & \mapsto & x \neq 0. \end{array}$$

Let $\{m_3\} = x \cdot \alpha + y \cdot \beta$. The obstruction to enhance $(\mathcal{T}_{\Sigma}, m_3)$ to an A_4 -category is

$$\begin{array}{rcl} \frac{1}{2}[X \cdot \alpha + y \cdot \beta, X \cdot \alpha + y \cdot \beta] &=& xy[\alpha, \beta] + \frac{1}{2}y^2[\beta, \beta], \\ &\in & HH^{5, -2}(\mathcal{T}_{\Sigma}) &\cong & k \cdot [\alpha, \beta] \oplus k \cdot [\beta, \beta], \quad [\alpha, \alpha] = \mathbf{0}, \end{array}$$

so the obstruction vanishes if and only if y = 0. Tate Amiot skip

$$\begin{array}{rcl} H\!H^{3,-1}(\mathcal{T}_{\Sigma}) \cong k \cdot \alpha \oplus k \cdot \beta & \longrightarrow & H\!H^{0,-1}(\text{mod-} \mathcal{T}_{\Sigma}, \mathsf{Ext}_{\mathcal{T}}^{3,*}) \cong k, \\ & \alpha & \mapsto & 1, \\ & \beta & \mapsto & 0, \\ & y \in k, \quad x \cdot \alpha + y \cdot \beta & \mapsto & x \neq 0. \end{array}$$

Let $\{m_3\} = x \cdot \alpha + y \cdot \beta$. The obstruction to enhance $(\mathcal{T}_{\Sigma}, m_3)$ to an A_4 -category is

$$\begin{array}{rcl} \frac{1}{2} [\boldsymbol{x} \cdot \boldsymbol{\alpha} + \boldsymbol{y} \cdot \boldsymbol{\beta}, \boldsymbol{x} \cdot \boldsymbol{\alpha} + \boldsymbol{y} \cdot \boldsymbol{\beta}] &= & \boldsymbol{x} \boldsymbol{y} [\boldsymbol{\alpha}, \boldsymbol{\beta}] + \frac{1}{2} \boldsymbol{y}^2 [\boldsymbol{\beta}, \boldsymbol{\beta}], \\ & \in & \boldsymbol{H} \boldsymbol{H}^{5, -2} (\mathcal{T}_{\boldsymbol{\Sigma}}) &\cong & \boldsymbol{k} \cdot [\boldsymbol{\alpha}, \boldsymbol{\beta}] \oplus \boldsymbol{k} \cdot [\boldsymbol{\beta}, \boldsymbol{\beta}], \quad [\boldsymbol{\alpha}, \boldsymbol{\alpha}] = \boldsymbol{0}, \end{array}$$

so the obstruction vanishes if and only if y = 0. Tate Amot Asia rate

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$\begin{array}{rcl} H\!H^{3,-1}(\mathcal{T}_{\Sigma}) \cong k \cdot \alpha \oplus k \cdot \beta & \longrightarrow & H\!H^{0,-1}(\text{mod-}\,\mathcal{T}_{\Sigma}, \mathsf{Ext}_{\mathcal{T}}^{3,*}) \cong k, \\ & \alpha & \mapsto & 1, \\ & \beta & \mapsto & 0, \\ & y \in k, \quad x \cdot \alpha + y \cdot \beta & \mapsto & x \neq 0. \end{array}$$

Let $\{m_3\} = x \cdot \alpha + y \cdot \beta$. The obstruction to enhance $(\mathcal{T}_{\Sigma}, m_3)$ to an A_4 -category is

$$\begin{array}{rcl} \frac{1}{2}[x \cdot \alpha + y \cdot \beta, x \cdot \alpha + y \cdot \beta] &=& xy[\alpha, \beta] + \frac{1}{2}y^2[\beta, \beta], \\ &\in & HH^{5, -2}(\mathcal{T}_{\Sigma}) &\cong & k \cdot [\alpha, \beta] \oplus k \cdot [\beta, \beta], \quad [\alpha, \alpha] = \mathbf{0}, \end{array}$$

so the obstruction vanishes if and only if y = 0. Tate Amiot Asia

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$\begin{array}{rcl} H\!H^{3,-1}(\mathcal{T}_{\Sigma}) \cong k \cdot \alpha \oplus k \cdot \beta & \longrightarrow & H\!H^{0,-1}(\text{mod-} \mathcal{T}_{\Sigma}, \mathsf{Ext}_{\mathcal{T}}^{3,*}) \cong k, \\ & \alpha & \mapsto & 1, \\ & \beta & \mapsto & 0, \\ & y \in k, \quad x \cdot \alpha + y \cdot \beta & \mapsto & x \neq 0. \end{array}$$

Let $\{m_3\} = x \cdot \alpha + y \cdot \beta$. The obstruction to enhance $(\mathcal{T}_{\Sigma}, m_3)$ to an A_4 -category is

$$\begin{array}{rcl} \frac{1}{2}[x \cdot \alpha + y \cdot \beta, x \cdot \alpha + y \cdot \beta] &=& xy[\alpha, \beta] + \frac{1}{2}y^2[\beta, \beta], \\ &\in & HH^{5, -2}(\mathcal{T}_{\Sigma}) &\cong & k \cdot [\alpha, \beta] \oplus k \cdot [\beta, \beta], \quad [\alpha, \alpha] = \mathbf{0}, \end{array}$$

so the obstruction vanishes if and only if y = 0. Tate Amiot skip

同 とくほ とくほ とう

$$E_2^{p,q} = HH^{p,r}(\text{mod-} \mathcal{T}_{\Sigma}, \text{Ext}_{\mathcal{I}}^{q,*}) \implies HH^{p+q,r}(\mathcal{T}_{\Sigma}),$$

 $E_2^{p,q} = HH^{p,r}(\text{Mod-}\widehat{H}^*(G,k), \text{Ext}_{\widehat{H}^*(G,k)}^{q,*}) \implies HH^{p+q,r}(\widehat{H}^*(G,k)),$ Here *G* is a finite group and $\widehat{H}^*(G,k)$ is Tate cohomology.

$$\begin{array}{rcl} \mathcal{H}\mathcal{H}^{3,-1}(\widehat{\mathcal{H}}^*(G,k)) & \stackrel{\mathsf{edge}}{\longrightarrow} & \mathcal{H}\mathcal{H}^{0,-1}(\mathsf{Mod}\text{-}\,\widehat{\mathcal{H}}^*(G,k),\mathsf{Ext}^{3,*}_{\widehat{\mathcal{H}}^*(G,k)}), \\ & \gamma_G & \mapsto & \kappa, \end{array}$$

Theorem (Benson–Krause–Schwede'03)

Given a right $\widehat{H}^*(G, k)$ -module X, $\kappa(X) = 0 \Leftrightarrow X$ is a direct summand of $\widehat{H}^*(G, M)$ for some kG-module M. Moreover, there is a class γ_G such that the edge homomorphism maps γ_G to κ .

Fernando Muro When can we enhance a triangulated category?

・ロト ・ 理 ト ・ ヨ ト ・

$$E_2^{p,q} = HH^{p,r}(\text{mod-} \mathcal{T}_{\Sigma}, \text{Ext}_{\mathcal{T}}^{q,*}) \implies HH^{p+q,r}(\mathcal{T}_{\Sigma}),$$

$$E_2^{p,q} = HH^{p,r}(\text{Mod-} \widehat{H}^*(G,k), \text{Ext}_{\widehat{H}^*(G,k)}^{q,*}) \implies HH^{p+q,r}(\widehat{H}^*(G,k)),$$
Here *G* is a finite group and $\widehat{H}^*(G,k)$ is Tate cohomology.

 $HH^{3,-1}(\widehat{H}^*(G,k)) \stackrel{\text{edge}}{\longrightarrow} HH^{0,-1}(\operatorname{Mod-}\widehat{H}^*(G,k),\operatorname{Ext}^{3,*}_{\widehat{H}^*(G,k)}),$

Theorem (Benson–Krause–Schwede'03)

Given a right $\hat{H}^*(G, k)$ -module X, $\kappa(X) = 0 \Leftrightarrow X$ is a direct summand of $\hat{H}^*(G, M)$ for some kG-module M. Moreover, there is a class γ_G such that the edge homomorphism maps γ_G to κ .

Fernando Muro When can we enhance a triangulated category?

$$E_2^{p,q} = HH^{p,r}(\text{mod-} \mathcal{T}_{\Sigma}, \text{Ext}_{\mathcal{T}}^{q,*}) \implies HH^{p+q,r}(\mathcal{T}_{\Sigma}),$$

$$E_2^{p,q} = HH^{p,r}(\text{Mod-} \widehat{H}^*(G,k), \text{Ext}_{\widehat{H}^*(G,k)}^{q,*}) \implies HH^{p+q,r}(\widehat{H}^*(G,k)),$$
Here *G* is a finite group and $\widehat{H}^*(G,k)$ is Tate cohomology.

$$\begin{array}{rcl} H\!H^{3,-1}(\widehat{H}^*(G,k)) & \stackrel{\text{edge}}{\longrightarrow} & H\!H^{0,-1}(\operatorname{Mod-}\widehat{H}^*(G,k),\operatorname{Ext}^{3,*}_{\widehat{H}^*(G,k)}), \\ & \gamma_G & \mapsto & \kappa, \end{array}$$

Theorem (Benson–Krause–Schwede'03)

Given a right $\hat{H}^*(G, k)$ -module X, $\kappa(X) = 0 \Leftrightarrow X$ is a direct summand of $\hat{H}^*(G, M)$ for some kG-module M. Moreover, there is a class γ_G such that the edge homomorphism maps γ_G to κ .

Fernando Muro When can we enhance a triangulated category?

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

$$E_2^{p,q} = HH^{p,r}(\text{mod-}\mathcal{T}_{\Sigma}, \text{Ext}_T^{q,*}) \implies HH^{p+q,r}(\mathcal{T}_{\Sigma}),$$

$$E_2^{p,q} = HH^{p,r}(\text{Mod-}\widehat{H}^*(G,k), \text{Ext}_{\widehat{H}^*(G,k)}^{q,*}) \implies HH^{p+q,r}(\widehat{H}^*(G,k)),$$
where *G* is a finite group and $\widehat{H}^*(G,k)$ is Tate subsymptotic equations.

Here G is a finite group and $H^*(G, k)$ is Tate cohomology.

Theorem (Benson–Krause–Schwede'03)

Given a right $\hat{H}^*(G, k)$ -module X, $\kappa(X) = 0 \Leftrightarrow X$ is a direct summand of $\hat{H}^*(G, M)$ for some kG-module M. Moreover, there is a class γ_G such that the edge homomorphism maps γ_G to κ .

Fernando Muro When can we enhance a triangulated category?

(日本) (日本) (日本) 日

$$E_2^{p,q} = HH^{p,r}(\text{mod-}\mathcal{T}_{\Sigma}, \text{Ext}_T^{q,*}) \implies HH^{p+q,r}(\mathcal{T}_{\Sigma}),$$

$$E_2^{p,q} = HH^{p,r}(\text{Mod-}\widehat{H}^*(G,k), \text{Ext}_{\widehat{H}^*(G,k)}^{q,*}) \implies HH^{p+q,r}(\widehat{H}^*(G,k)),$$
here *G* is a finite group and $\widehat{H}^*(G,k)$ is Tate cohomology.

Here G is a finite group and $H^*(G, k)$ is Tate cohomology.

$$egin{array}{rcl} HH^{3,-1}(\widehat{H}^*(G,k))&\stackrel{ ext{edge}}{\longrightarrow}&HH^{0,-1}(\operatorname{\mathsf{Mod-}}\widehat{H}^*(G,k),\operatorname{\mathsf{Ext}}^{3,*}_{\widehat{H}^*(G,k)}),\ &\gamma_G&\mapsto&\kappa, \end{array}$$

Theorem (Benson–Krause–Schwede'03)

Given a right $\widehat{H}^*(G, k)$ -module X, $\kappa(X) = 0 \Leftrightarrow X$ is a direct summand of $\widehat{H}^*(G, M)$ for some kG-module M. Moreover, there is a class γ_G such that the edge homomorphism maps γ_G to κ .

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

$$E_2^{p,q} = HH^{p,r}(\text{mod-}\mathcal{T}_{\Sigma}, \text{Ext}_T^{q,*}) \implies HH^{p+q,r}(\mathcal{T}_{\Sigma}),$$

$$E_2^{p,q} = HH^{p,r}(\text{Mod-}\widehat{H}^*(G,k), \text{Ext}_{\widehat{H}^*(G,k)}^{q,*}) \implies HH^{p+q,r}(\widehat{H}^*(G,k)),$$
where G is a finite group and $\widehat{U}^*(G,k)$ is Tata as homology:

Here G is a finite group and $\widehat{H}^*(G, k)$ is Tate cohomology.

$$egin{array}{rcl} \mathcal{H}^{3,-1}(\widehat{\mathcal{H}}^*(G,k))&\stackrel{ ext{edge}}{\longrightarrow}&\mathcal{H}\mathcal{H}^{0,-1}(\operatorname{\mathsf{Mod}}\mbox{-}\widehat{\mathcal{H}}^*(G,k),\operatorname{\mathsf{Ext}}^{3,*}_{\widehat{\mathcal{H}}^*(G,k)}),\ &\gamma_G&\mapsto&\kappa, \end{array}$$

Theorem (Benson–Krause–Schwede'03)

dual numbers Amiot

Given a right $\widehat{H}^*(G, k)$ -module X, $\kappa(X) = 0 \Leftrightarrow X$ is a direct summand of $\widehat{H}^*(G, M)$ for some kG-module M. Moreover, there is a class γ_G such that the edge homomorphism maps γ_G to κ .

Fernando Muro When can we enhance a triangulated category?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

An open problem

There are relevant finiteness conditions on triangulated categories which may allow cohomological computations:

- Krull–Remak–Schmidt.
- Finitely many indecomposables.
- Finite-dimensional hom's.

Over an algebraically closed field k, [Amiot'06] has classified the underlying category of a wide class of triangulated categories satisfying these conditions. This class includes maximal d-Calabi–Yau's, $d \ge 2$.

It could be interesting to determine how many of them are algebraic for $k = \overline{\mathbb{Q}}$. This could eventually yield examples of exotic triangulated categories where 2 and all primes are invertible.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

There are relevant finiteness conditions on triangulated categories which may allow cohomological computations:

- Krull–Remak–Schmidt.
- Finitely many indecomposables.
- Finite-dimensional hom's.

Over an algebraically closed field k, [Amiot'06] has classified the underlying category of a wide class of triangulated categories satisfying these conditions. This class includes maximal d-Calabi–Yau's, $d \ge 2$.

It could be interesting to determine how many of them are algebraic for $k = \overline{\mathbb{Q}}$. This could eventually yield examples of exotic triangulated categories where 2 and all primes are invertible.

(本間) (本語) (本語) (語)

There are relevant finiteness conditions on triangulated categories which may allow cohomological computations:

- Krull–Remak–Schmidt.
- Finitely many indecomposables.
- Finite-dimensional hom's.

Over an algebraically closed field k, [Amiot'06] has classified the underlying category of a wide class of triangulated categories satisfying these conditions. This class includes maximal d-Calabi–Yau's, $d \ge 2$.

It could be interesting to determine how many of them are algebraic for $k = \overline{\mathbb{Q}}$. This could eventually yield examples of exotic triangulated categories where 2 and all primes are invertible.

御 医 金属 医 金属 医

- Kadeishvili's theorem: any A_∞-category is quasi-isomorphic to a minimal one.
- The spectral sequence: $HH^{p,r}(\text{mod-}\mathcal{T}_{\Sigma}, \text{Ext}_{\mathcal{T}}^{q,*}) \Rightarrow HH^{p+q,r}(\mathcal{T}_{\Sigma}).$

What happens when k is just a commutative ring?

What about topological triangulated categories?

ヘロン ヘアン ヘビン ヘビン

- Kadeishvili's theorem: any A_∞-category is quasi-isomorphic to a minimal one.
- The spectral sequence: $HH^{p,r}(\text{mod-}\mathcal{T}_{\Sigma}, \text{Ext}_{\mathcal{T}}^{q,*}) \Rightarrow HH^{p+q,r}(\mathcal{T}_{\Sigma}).$

What happens when k is just a commutative ring?

What about topological triangulated categories?

ヘロン ヘアン ヘビン ヘビン

- Kadeishvili's theorem: any A_∞-category is quasi-isomorphic to a minimal one.
- The spectral sequence: $HH^{p,r}(\text{mod-}\mathcal{T}_{\Sigma}, \text{Ext}_{\mathcal{T}}^{q,*}) \Rightarrow HH^{p+q,r}(\mathcal{T}_{\Sigma}).$

What happens when k is just a commutative ring?

What about topological triangulated categories?

・ロット (雪) (手) (日) (

- Kadeishvili's theorem: any A_∞-category is quasi-isomorphic to a minimal one.
- The spectral sequence: $HH^{p,r}(\text{mod-}\mathcal{T}_{\Sigma}, \text{Ext}_{\mathcal{T}}^{q,*}) \Rightarrow HH^{p+q,r}(\mathcal{T}_{\Sigma}).$

What happens when k is just a commutative ring?

What about topological triangulated categories?

ヘロン 人間 とくほとく ほとう

- Kadeishvili's theorem: any A_∞-category is quasi-isomorphic to a minimal one.
- The spectral sequence: $HH^{p,r}(\text{mod-}\mathcal{T}_{\Sigma}, \text{Ext}_{\mathcal{T}}^{q,*}) \Rightarrow HH^{p+q,r}(\mathcal{T}_{\Sigma}).$

What happens when k is just a commutative ring?

What about topological triangulated categories?

・ロト ・ 理 ト ・ ヨ ト ・

There is a version of Kadeishvili's theorem over an arbitrary commutative ring.

Theorem (Sagave'08)

Any A $_\infty$ -algebra is quasi-isomorphic to a minimal derived A $_\infty$ -algebra.

This theorem may be extended to A_{∞} -categories.

Derived A_{∞} -algebras are related to Shukla cohomology (a.k.a. derived Hochschild cohomology) as A_{∞} -algebras are related to Hochschild cohomology. In particular any derived A_{∞} -algebra \mathcal{A} yields a characteristic cohomology class

$$\gamma_{\mathcal{A}} \in SH^{3,-1}(H^*\mathcal{A}).$$

ヘロト 人間 ト ヘヨト ヘヨト

There is a version of Kadeishvili's theorem over an arbitrary commutative ring.

Theorem (Sagave'08)

Any A_{∞} -algebra is quasi-isomorphic to a minimal derived A_{∞} -algebra.

This theorem may be extended to A_{∞} -categories.

Derived A_{∞} -algebras are related to Shukla cohomology (a.k.a. derived Hochschild cohomology) as A_{∞} -algebras are related to Hochschild cohomology. In particular any derived A_{∞} -algebra \mathcal{A} yields a characteristic cohomology class

$$\gamma_{\mathcal{A}} \in SH^{3,-1}(H^*\mathcal{A}).$$

・ロト ・ 理 ト ・ ヨ ト ・

There is a version of Kadeishvili's theorem over an arbitrary commutative ring.

Theorem (Sagave'08)

Any A_{∞} -algebra is quasi-isomorphic to a minimal derived A_{∞} -algebra.

This theorem may be extended to A_{∞} -categories.

Derived A_{∞} -algebras are related to Shukla cohomology (a.k.a. derived Hochschild cohomology) as A_{∞} -algebras are related to Hochschild cohomology. In particular any derived A_{∞} -algebra \mathcal{A} yields a characteristic cohomology class

$$\gamma_{\mathcal{A}} \in SH^{3,-1}(H^*\mathcal{A}).$$

・ロト ・ 理 ト ・ ヨ ト ・

There is a version of Kadeishvili's theorem over an arbitrary commutative ring.

Theorem (Sagave'08)

Any A_{∞} -algebra is quasi-isomorphic to a minimal derived A_{∞} -algebra.

This theorem may be extended to A_{∞} -categories.

Derived A_{∞} -algebras are related to Shukla cohomology (a.k.a. derived Hochschild cohomology) as A_{∞} -algebras are related to Hochschild cohomology. In particular any derived A_{∞} -algebra \mathcal{A} yields a characteristic cohomology class

$$\gamma_{\mathcal{A}} \in SH^{3,-1}(H^*\mathcal{A}).$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

There is a version of Kadeishvili's theorem over an arbitrary commutative ring.

Theorem (Sagave'08)

Any A_{∞} -algebra is quasi-isomorphic to a minimal derived A_{∞} -algebra.

This theorem may be extended to A_{∞} -categories.

Derived A_{∞} -algebras are related to Shukla cohomology (a.k.a. derived Hochschild cohomology) as A_{∞} -algebras are related to Hochschild cohomology. In particular any derived A_{∞} -algebra \mathcal{A} yields a characteristic cohomology class

$$\gamma_{\mathcal{A}} \in SH^{3,-1}(H^*\mathcal{A}).$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

There is an ungraded version of the spectral sequence for Shukla cohomology.

Theorem (Lowen-van den Bergh'04)

If \mathcal{T} is a triangulated category over k then there is a spectral sequence $E_2^{p,q} = SH^p(\text{mod-}\mathcal{T}, \text{Ext}_{\mathcal{T}}^q) \Rightarrow SH^{p+q}(\mathcal{T}).$

Obtain the graded version!

ヘロト ヘアト ヘビト ヘビト

There is an ungraded version of the spectral sequence for Shukla cohomology.

Theorem (Lowen-van den Bergh'04)

If \mathcal{T} is a triangulated category over k then there is a spectral sequence $E_2^{p,q} = SH^p(\text{mod-}\mathcal{T}, \text{Ext}_{\mathcal{T}}^q) \Rightarrow SH^{p+q}(\mathcal{T}).$

Obtain the graded version!

ヘロト 人間 ト ヘヨト ヘヨト

Over a field k, ungraded Hochschild cohomology is related to the graded version as follows.

Proposition

There are exact triangles in D(k) for all $r, q \in \mathbb{Z}$,

$$C^{*,r}(\mathcal{T}_{\Sigma}) \to C^{*}(\mathcal{T}, \mathsf{Hom}_{\mathcal{T}}^{r}) \xrightarrow{1+\sum_{*}^{-1}\Sigma^{*}} C^{*}(\mathcal{T}, \mathsf{Hom}_{\mathcal{T}}^{r}) \to C^{*,r}(\mathcal{T}_{\Sigma})[1],$$

 $\mathcal{C}^{*,r}(\mathsf{mod-}\mathcal{T}_{\Sigma},\mathsf{Ext}_{\mathcal{T}}^{q,*})\to \mathcal{C}^{*}(\mathsf{mod-}\mathcal{T},\mathsf{Ext}_{\mathcal{T}}^{q,r})\to \mathcal{C}^{*}(\mathsf{mod-}\mathcal{T},\mathsf{Ext}_{\mathcal{T}}^{q,r})\cdots.$

Corollary

The graded Hochschild cohomology $HH^{*,-1}(T_{\Sigma})$ is translation Hochschild cohomology $HH^{*}(\mathcal{T}, \Sigma)$ [Baues–M.'07].

<ロト <回 > < 注 > < 注 > 、

Over a field k, ungraded Hochschild cohomology is related to the graded version as follows.

Proposition

There are exact triangles in D(k) for all $r, q \in \mathbb{Z}$,

$$C^{*,r}(\mathcal{T}_{\Sigma}) \to C^{*}(\mathcal{T}, \mathsf{Hom}_{\mathcal{T}}^{r}) \stackrel{1+\sum_{*}^{-1}\Sigma^{*}}{\longrightarrow} C^{*}(\mathcal{T}, \mathsf{Hom}_{\mathcal{T}}^{r}) \to C^{*,r}(\mathcal{T}_{\Sigma})[1],$$

 $C^{*,r}(\mathsf{mod-}\mathcal{T}_{\Sigma},\mathsf{Ext}_{\mathcal{T}}^{q,*}) o C^{*}(\mathsf{mod-}\mathcal{T},\mathsf{Ext}_{\mathcal{T}}^{q,r}) o C^{*}(\mathsf{mod-}\mathcal{T},\mathsf{Ext}_{\mathcal{T}}^{q,r}) \cdots$

Corollary

The graded Hochschild cohomology $HH^{*,-1}(T_{\Sigma})$ is translation Hochschild cohomology $HH^{*}(\mathcal{T}, \Sigma)$ [Baues–M.'07].

・ロト ・ 理 ト ・ ヨ ト ・

ъ
Over a field k, ungraded Hochschild cohomology is related to the graded version as follows.

Proposition

There are exact triangles in D(k) for all $r, q \in \mathbb{Z}$,

$$\mathcal{C}^{*,r}(\mathcal{T}_{\Sigma}) \to \mathcal{C}^{*}(\mathcal{T},\mathsf{Hom}_{\mathcal{T}}^{r}) \stackrel{1+\sum_{*}^{-1}\Sigma^{*}}{\longrightarrow} \mathcal{C}^{*}(\mathcal{T},\mathsf{Hom}_{\mathcal{T}}^{r}) \to \mathcal{C}^{*,r}(\mathcal{T}_{\Sigma})[1],$$

 $\mathcal{C}^{*,r}(\mathsf{mod-}\,\mathcal{T}_{\Sigma},\mathsf{Ext}_{\mathcal{T}}^{q,*})\to \mathcal{C}^*(\mathsf{mod-}\,\mathcal{T},\mathsf{Ext}_{\mathcal{T}}^{q,r})\to \mathcal{C}^*(\mathsf{mod-}\,\mathcal{T},\mathsf{Ext}_{\mathcal{T}}^{q,r})\cdots.$

Corollary

The graded Hochschild cohomology $HH^{*,-1}(T_{\Sigma})$ is translation Hochschild cohomology $HH^{*}(\mathcal{T}, \Sigma)$ [Baues–M.'07].

イロト 不得 とくほ とくほ とう

3

Over a field k, ungraded Hochschild cohomology is related to the graded version as follows.

Proposition

There are exact triangles in D(k) for all $r, q \in \mathbb{Z}$,

$$\mathcal{C}^{*,r}(\mathcal{T}_{\Sigma}) \to \mathcal{C}^{*}(\mathcal{T},\mathsf{Hom}_{\mathcal{T}}^{r}) \stackrel{1+\sum_{*}^{-1}\Sigma^{*}}{\longrightarrow} \mathcal{C}^{*}(\mathcal{T},\mathsf{Hom}_{\mathcal{T}}^{r}) \to \mathcal{C}^{*,r}(\mathcal{T}_{\Sigma})[1],$$

 ${\boldsymbol{\mathcal{C}}}^{*,r}(\operatorname{\mathsf{mod-}}{\mathcal{T}}_{\Sigma},\operatorname{\mathsf{Ext}}_{\mathcal{T}}^{q,*})\to {\boldsymbol{\mathcal{C}}}^*(\operatorname{\mathsf{mod-}}{\mathcal{T}},\operatorname{\mathsf{Ext}}_{\mathcal{T}}^{q,r})\to {\boldsymbol{\mathcal{C}}}^*(\operatorname{\mathsf{mod-}}{\mathcal{T}},\operatorname{\mathsf{Ext}}_{\mathcal{T}}^{q,r})\cdots.$

Corollary

The graded Hochschild cohomology $HH^{*,-1}(\mathcal{T}_{\Sigma})$ is translation Hochschild cohomology $HH^{*}(\mathcal{T}, \Sigma)$ [Baues–M.'07].

・ロト ・聞 と ・ ヨ と ・ ヨ と …

ъ

Definition (Schwede'06)

A triangulated category T is topological if it is equivalent to a full triangulated subcategory of a stable homotopy category.

Theorem (Dugger'06,...)

If T is compactly generated then T is topological $\Leftrightarrow T = \pi_0 S$ for a pretriangulated spectral category S.

Let \mathcal{T} be a triangulated category with suspension Σ .

When is T topological?

ヘロト ヘアト ヘヨト ヘ

Definition (Schwede'06)

A triangulated category T is topological if it is equivalent to a full triangulated subcategory of a stable homotopy category.

Theorem (Dugger'06,...)

If T is compactly generated then T is topological $\Leftrightarrow T = \pi_0 S$ for a pretriangulated spectral category S.

Let T be a triangulated category with suspension Σ .

When is T topological?

・ロト ・ 理 ト ・ ヨ ト ・

Definition (Schwede'06)

A triangulated category T is topological if it is equivalent to a full triangulated subcategory of a stable homotopy category.

Theorem (Dugger'06,...)

If T is compactly generated then T is topological $\Leftrightarrow T = \pi_0 S$ for a pretriangulated spectral category S.

Let \mathcal{T} be a triangulated category with suspension Σ .

When is T topological?

ヘロン ヘアン ヘビン ヘビン

Topological triangulated categories

We do not know of any version of Kadeishvili's theorem for ring spectra.

The topological Hochschild cohomology of an additive category C is equivalent to the Baues–Wirsching cohomology of C [Pirashvili–Waldhausen'92, Dundas].

Theorem (Baues–M.'06)

If \mathcal{T} is topological then any pretriangulated spectral category S with $\mathcal{T} = \pi_0 S$ yields a translation Baues–Wirsching cohomology class $\gamma_S \in H^3(\mathcal{T}, \Sigma)$.

The class γ_S is represented by the suspension pseudofunctor in the 2-category $\Pi_1 S$.

・ロト ・ 理 ト ・ ヨ ト ・

Topological triangulated categories

We do not know of any version of Kadeishvili's theorem for ring spectra.

The topological Hochschild cohomology of an additive category C is equivalent to the Baues–Wirsching cohomology of C [Pirashvili–Waldhausen'92, Dundas].

Theorem (Baues–M.'06)

If \mathcal{T} is topological then any pretriangulated spectral category S with $\mathcal{T} = \pi_0 S$ yields a translation Baues–Wirsching cohomology class $\gamma_S \in H^3(\mathcal{T}, \Sigma)$.

The class γ_S is represented by the suspension pseudofunctor in the 2-category $\Pi_1 S$.

・ロト ・ 理 ト ・ ヨ ト ・

Topological triangulated categories

We do not know of any version of Kadeishvili's theorem for ring spectra.

The topological Hochschild cohomology of an additive category C is equivalent to the Baues–Wirsching cohomology of C [Pirashvili–Waldhausen'92, Dundas].

Theorem (Baues–M.'06)

If \mathcal{T} is topological then any pretriangulated spectral category S with $\mathcal{T} = \pi_0 S$ yields a translation Baues–Wirsching cohomology class $\gamma_S \in H^3(\mathcal{T}, \Sigma)$.

The class γ_S is represented by the suspension pseudofunctor in the 2-category $\Pi_1 S$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Baues–Wirsching translation cohomology $H^*(\mathcal{T}, \Sigma)$ is defined as the cohomology of the complex $F(\mathcal{T}, \Sigma)$ fitting into the exact triangle

$$F(\mathcal{T}, \Sigma) o THH(\mathcal{T}, \mathsf{Hom}_{\mathcal{T}}^{-1}) \stackrel{1+\Sigma_*^{-1}\Sigma^*}{\longrightarrow} THH(\mathcal{T}, \mathsf{Hom}_{\mathcal{T}}^{-1}) o F(\mathcal{T}, \Sigma)[1].$$

• $H^*(\mathcal{T}, \Sigma) \cong THH^{*,-1}(\mathcal{T}_{\Sigma})$?

Can one recover an A₃-spectral category S with π_{*}S = T_Σ out of a cohomology class γ_S ∈ H³(T, Σ)?

イロト イポト イヨト イヨト 三日

Baues–Wirsching translation cohomology $H^*(\mathcal{T}, \Sigma)$ is defined as the cohomology of the complex $F(\mathcal{T}, \Sigma)$ fitting into the exact triangle

$$F(\mathcal{T}, \Sigma) o THH(\mathcal{T}, \mathsf{Hom}_{\mathcal{T}}^{-1}) \stackrel{1+\Sigma_*^{-1}\Sigma^*}{\longrightarrow} THH(\mathcal{T}, \mathsf{Hom}_{\mathcal{T}}^{-1}) o F(\mathcal{T}, \Sigma)[1].$$

• $H^*(\mathcal{T}, \Sigma) \cong THH^{*,-1}(\mathcal{T}_{\Sigma})$?

Can one recover an A₃-spectral category S with π_{*}S = T_Σ out of a cohomology class γ_S ∈ H³(T, Σ)?

イロト イポト イヨト イヨト 三日

Baues–Wirsching translation cohomology $H^*(\mathcal{T}, \Sigma)$ is defined as the cohomology of the complex $F(\mathcal{T}, \Sigma)$ fitting into the exact triangle

$$F(\mathcal{T}, \Sigma) \to THH(\mathcal{T}, Hom_{\mathcal{T}}^{-1}) \xrightarrow{1+\Sigma_{*}^{-1}\Sigma^{*}} THH(\mathcal{T}, Hom_{\mathcal{T}}^{-1}) \to F(\mathcal{T}, \Sigma)[1].$$

- $H^*(\mathcal{T}, \Sigma) \cong THH^{*,-1}(\mathcal{T}_{\Sigma})$?
- Can one recover an A₃-spectral category S with π_{*}S = T_Σ out of a cohomology class γ_S ∈ H³(T, Σ)?

イロト イポト イヨト イヨト 三日

Combining results of [Jibladze–Pirashvili'91] and [Ulmer'69] we obtain the following result.

Theorem

If \mathcal{T} is a triangulated category then there is a spectral sequence $THH^{p}(\text{mod-}\mathcal{T}, \mathsf{Ext}^{q}_{\mathcal{T}}) \Rightarrow THH^{p+q}(\mathcal{T}).$

ヘロト ヘアト ヘビト ヘビト

æ

When can we enhance a triangulated category?

The End Thanks for your attention!

Fernando Muro When can we enhance a triangulated category?