

The Donovan–Wemyss conjecture on compound Du Val singularities

An application of the triangulated Auslander–Iyama correspondence

Glasqow 7/3/2023

Fernando Muro

Universidad de Sevilla

fmuro@us.es

personal.us.es/fmuro

🏛 MathSciNet 🖾 muro f 1

R complete local isolated compound Du Val (cDV) singularity with smooth minimal model.

 $\mathcal{T} = D^{sg}(R) = D^{b}(R) / perf(R)$ singularity category.

The Donovan-Wemyss conjecture

Conjecture (donovan_wemyss_2016_noncommutative_deformations august_2020_finiteness_derived_equivalence)

Given complete isolated cDV singularities R_1, R_2 with smooth minimal models and contraction algebras Λ_1, Λ_2 ,

$$R_1\cong R_2 \Longleftrightarrow D(\Lambda_1)\simeq D(\Lambda_2).$$

- ⇒ follows from wemyss_2018_flops_clusters_homological and dugas_2015_construction_derived_equivalent.
- ← follows from hua_keller_2021_cluster_categories_rational and jasso_muro_2022_triangulated_auslander_iyama, as noticed by Keller.

By **august_2020_finiteness_derived_equivalence**, in \leftarrow we can assume $\Lambda_1 \cong \Lambda_2$.

$2\mathbb{Z}$ -derived contraction algebras

Take the derived endomorphism DG algebra of $c \in T$ instead. We call it $2\mathbb{Z}$ -derived contraction algebra,

 $\Lambda^{\mathrm{dg}} = \mathbb{RT}(c,c), \qquad \Lambda = H^0(\Lambda^{\mathrm{dg}}), \qquad \mathcal{T} = \mathrm{perf}(\Lambda^{\mathrm{dg}}).$

Theorem (hua_keller_2021_cluster_categories_rational) Given an isolated cDV singularity

$$R = \frac{\mathbb{C}\llbracket u, v, x, y \rrbracket}{(f)}$$

with smooth minimal model

$$HH^{0}(\Lambda^{dg}, \Lambda^{dg}) = \frac{\mathbb{C}\llbracket u, v, x, y \rrbracket}{\left(f, \frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)} \text{Tyurina algebra.}$$

Corollary (hua_keller_2021_cluster_categories_rational) Given complete local isolated cDV R_1, R_2 with smooth minimal models and 2 \mathbb{Z} -derived contraction algebras $\Lambda_1^{dg}, \Lambda_2^{dg}$,

 $\Lambda_1^{dg} \simeq \Lambda_2^{dg} \Rightarrow R_1, R_2$ have the same Tyurina algebra $\Rightarrow R_1 \cong R_2$ (mather_yau_1982_classification_isolated_hyper)

We start with results from **jasso_muro_2022_triangulated_auslander_iyama**.

Theorem

Given complete local isolated cDV R_1, R_2 with smooth minimal models, contraction algebras Λ_1, Λ_2 and $2\mathbb{Z}$ -derived contraction algebras $\Lambda_1^{\text{dg}}, \Lambda_2^{\text{dg}}$,

$$\Lambda_1 \cong \Lambda_2 \Rightarrow \Lambda_1^{\mathrm{dg}} \simeq \Lambda_2^{\mathrm{dg}}.$$

In order to prove this theorem we must answer the following question.

Question

Can we recover Λ^{dg} from $\Lambda = H^0(\Lambda)$?

• Recall that $\Lambda^{dg} = \mathbb{RT}(c, c)$.

- Recall that $\Lambda^{dg} = \mathbb{RT}(c, c)$.
- $H^n(\Lambda^{\mathrm{dg}}) = \mathcal{T}(c, c[n]).$

- Recall that $\Lambda^{dg} = \mathbb{RT}(c, c)$.
- $H^n(\Lambda^{\mathrm{dg}}) = \mathcal{T}(c, c[n]).$
- 𝔅(c, c[odd]) = 0 since c is 2ℤ-cluster tilting.

- Recall that $\Lambda^{dg} = \mathbb{RT}(c, c)$.
- $H^n(\Lambda^{\mathrm{dg}}) = \mathcal{T}(c, c[n]).$
- 𝔅(c, c[odd]) = 0 since c is 2ℤ-cluster tilting.
- [2] = id_T since Spec(*R*) is a hypersurface.

- Recall that $\Lambda^{dg} = \mathbb{RT}(c, c)$.
- $H^n(\Lambda^{dg}) = \mathcal{T}(c, c[n]).$
- $\mathcal{T}(c, c[odd]) = 0$ since c is $2\mathbb{Z}$ -cluster tilting.
- [2] = id_T since Spec(*R*) is a hypersurface.
- $\mathcal{T}(c, c[even]) = \mathcal{T}(c, c) = \Lambda$.

- Recall that $\Lambda^{dg} = \mathbb{RT}(c, c)$.
- $H^n(\Lambda^{dg}) = \mathcal{T}(c, c[n]).$
- 𝔅(c, c[odd]) = 0 since c is 2ℤ-cluster tilting.
- [2] = id_T since Spec(*R*) is a hypersurface.
- $\mathcal{T}(c, c[even]) = \mathcal{T}(c, c) = \Lambda$.
- $H^*(\Lambda^{dg}) = \Lambda[t^{\pm 1}], |t| = -2$, concentrated in even degrees.

- Recall that $\Lambda^{dg} = \mathbb{RT}(c, c)$.
- $H^n(\Lambda^{dg}) = \mathcal{T}(c, c[n]).$
- 𝔅(c, c[odd]) = 0 since c is 2ℤ-cluster tilting.
- [2] = id_T since Spec(*R*) is a hypersurface.
- $\mathcal{T}(c, c[even]) = \mathcal{T}(c, c) = \Lambda$.
- $H^*(\Lambda^{dg}) = \Lambda[t^{\pm 1}], |t| = -2$, concentrated in even degrees.

- Recall that $\Lambda^{dg} = \mathbb{RT}(c, c)$.
- $H^n(\Lambda^{dg}) = \mathcal{T}(c, c[n]).$
- 𝔅(c, c[odd]) = 0 since c is 2ℤ-cluster tilting.
- [2] = id_T since Spec(*R*) is a hypersurface.
- $\mathcal{T}(c, c[even]) = \mathcal{T}(c, c) = \Lambda$.
- $H^*(\Lambda^{dg}) = \Lambda[t^{\pm 1}], |t| = -2$, concentrated in even degrees.

Question

Can we recover Λ^{dg} from $H^*(\Lambda) = \Lambda[t^{\pm 1}]$?

Formality

A DGA A is **formal** if $A \simeq H^*(A)$.

Formality

A DGA A is **formal** if $A \simeq H^*(A)$.

A graded algebra B is **intrinsically formal** if any DGA A with $H^*(A) = B$ is formal.

Formality

A DGA A is **formal** if $A \simeq H^*(A)$.

A graded algebra B is **intrinsically formal** if any DGA A with $H^*(A) = B$ is formal.

Theorem (kadeishvili_1988_structure_infty_algebra) $HH^{n,2-n}(B,B) = 0, n > 2 \Rightarrow B$ is intrinsically formal. A DGA A is **formal** if $A \simeq H^*(A)$.

A graded algebra *B* is **intrinsically formal** if any DGA A with $H^*(A) = B$ is formal.

Theorem (kadeishvili_1988_structure_infty_algebra) $HH^{n,2-n}(B,B) = 0, n > 2 \Rightarrow B$ is intrinsically formal.

Theorem

Given a complete local isolated cDV singularity *R* with contraction algebra Λ, TFAE:

- 1. $\Lambda[t^{\pm 1}]$ is intrinsically formal.
- 2. **∧** = ℂ.
- 3. $R = \mathbb{C}\llbracket u, v, x, y \rrbracket / (uv xy).$
 - 4. $f: Y \to X$ is the Atiyah flop.

An A_{∞} -algebra (A, $m_1, m_2, m_3, ...$) is a graded vector space A equipped with operations

 $m_n: A \otimes \stackrel{n}{\cdots} \otimes A \longrightarrow A, \qquad |m_n| = 2 - n, \qquad n \ge 1,$

satisfying some equations:

- (A, m₁) is a complex, m₁² = 0;
- $xy = m_2(x, y)$ satisfies the Leibniz rule w.r.t. $\partial = m_1$,

$$\partial(xy) = \partial(x)y + (-1)^{|x|}x\partial(y);$$

the product m₂ is associative up to the homotopy m₃;
...

In particular $H^*(A)$ is a graded algebra.

A_{∞} -algebras

Minimal A_{∞} -models

A **minimal** A_{∞} -**model** of Λ^{dg} looks like

 $(\Lambda[t^{\pm 1}], m_4, m_6, m_8, \dots).$

Minimal A_{∞} -models

A **minimal** A_{∞} -model of Λ^{dg} looks like

 $(\Lambda[t^{\pm 1}], m_4, m_6, m_8, \dots).$

Example (The pagoda) Consider

$$R = \frac{\mathbb{C}\llbracket u, v, x, y \rrbracket}{(uv - (x - y^2)(x + y^2))}, \qquad \Lambda = \frac{\mathbb{C}[y]}{(y^2)},$$

 $\Lambda^{\rm dg} = \mathbb{C}[y] \langle w^{\pm 1} \rangle, \quad |y| = 0, \quad |w| = -1, \quad d(y) = 0, \quad d(w) = y^2,$

and for $n \ge 4$ the only non-trivial m_n is

$$\Lambda[t^{\pm 1}] = \frac{\mathbb{C}[y, t^{\pm 1}]}{(y^2)}, \qquad m_4(yt^a, yt^b, yt^c, yt^d) = t^{a+b+c+d+1}.$$

The **Hochschild cohomology** of a graded algebra *B* with coefficients on an *B*-bimodule *M* is

 $HH^{\bullet,*}(B,M) = \operatorname{Ext}_{B^e}^{\bullet,*}(B,M).$

- = **Hochschild degree** = extension length.
- * = **inner degree**, coming from the fact that A is graded.

It is the cohomology of the Hochschild complex

$$C^{n}(B, M) = \operatorname{Hom}_{\mathbb{C}}(B \otimes \overset{n}{\cdots} \otimes B, M).$$

The A_{∞} -operations of ($\Lambda[t^{\pm 1}], m_4, m_6, m_8, ...$) are Hochschild cochains

$$m_n \in C^{n,2-n}(\Lambda[t^{\pm 1}], \Lambda[t^{\pm 1}]).$$

Universal Massey products

The universal Massey product (UMP) of Λ^{dg} is

 $\{m_4\}\in HH^{4,-2}(\Lambda[t^{\pm 1}],\Lambda[t^{\pm 1}]).$

The **universal Massey product (UMP)** of Λ^{dg} is

 $\{m_4\}\in HH^{4,-2}(\Lambda[t^{\pm 1}],\Lambda[t^{\pm 1}]).$

If $j : \Lambda \hookrightarrow \Lambda[t^{\pm 1}]$ is the degree 0 inclusion, the **restriected UMP** is $j^*\{m_4\} \in HH^{4,-2}(\Lambda, \Lambda[t^{\pm 1}]) = HH^4(\Lambda, \Lambda \cdot t) = \text{Ext}^4_{\Lambda^e}(\Lambda, \Lambda).$ The universal Massey product (UMP) of Λ^{dg} is

 $\{m_4\}\in HH^{4,-2}(\Lambda[t^{\pm 1}],\Lambda[t^{\pm 1}]).$

If $j : \Lambda \hookrightarrow \Lambda[t^{\pm 1}]$ is the degree 0 inclusion, the **restriected UMP** is $j^*\{m_4\} \in HH^{4,-2}(\Lambda, \Lambda[t^{\pm 1}]) = HH^4(\Lambda, \Lambda \cdot t) = \text{Ext}^4_{\Lambda^e}(\Lambda, \Lambda).$

Theorem

The restricted UMP $j^*{m_4}$ can be represented by an extension

$$\Lambda \hookrightarrow P_4 \to P_3 \to P_2 \to P_1 \twoheadrightarrow \Lambda$$

with P_i projective Λ -bimodules i = 1, 2, 3, 4.

This is connected to **4-angulated categories** in the sense of **geiss_keller_oppermann_2013_angulated_categories**.

Example (The pagoda) In this case $\Lambda = \frac{\mathbb{C}[y]}{(y^2)}, \qquad \operatorname{Ext}^{\bullet}_{\Lambda^e}(\Lambda, \Lambda) = \frac{\mathbb{C}[y, \varphi, \psi]}{(y^2, y\varphi, y\psi)}, \quad |\varphi| = 1, \ |\psi| = 2,$ where $\varphi(y) = y$, $\psi(y, y) = 1$. Moreover, ψ is represented by $0 \to \Lambda \xrightarrow{1 \otimes y + y \otimes 1} \Lambda^e \xrightarrow{1 \otimes y - y \otimes 1} \Lambda^e \xrightarrow{\text{product}} \Lambda \to 0$ and $j^*{m_4} = \psi^2$ is obtained by splicing this extension with itself.

Since Λ is self-injective, we can define its **Hochschild–Tate cohomology** with coefficients in a Λ-bimodule M

 $\underline{HH}^{\bullet}(\Lambda,M) = \underline{Ext}^{\bullet}_{\Lambda^{e}}(\Lambda,M)$

from a periodic resolution of Λ as a Λ -bimodule.

 $HH^{>0}(\Lambda,M)=\underline{HH}^{>0}(\Lambda,M).$

The previous theorem is equivalent to:

Theorem The rUMP $j^{*}\{m_{4}\}$ is a bidegree (4, -2) unit in <u>HH</u>^{•,*}($\Lambda, \Lambda[t^{\pm 1}]$).

Example (The pagoda)
In this case

$$\Lambda = \frac{\mathbb{C}[y]}{(y^2)}, \qquad \underline{HH}^{\bullet,*}(\Lambda, \Lambda[t^{\pm 1}]) = \mathbb{C}[\varphi, \psi^{\pm 1}, t^{\pm 1}],$$
with

$$|\varphi| = (1, 0), \qquad |\psi| = (2, 0), \qquad |t| = (0, -2),$$

and $j^*{m_4} = \psi^2 t$ is obviously a unit.

Corollary

TFAE:

- 1. Λ^{dg} is formal.
- 2. $\{m_4\} = 0$.
- 3. <u>*HH*</u>^{•,*}(Λ , Λ [$t^{\pm 1}$]) has a trivial unit.
- 4. $\underline{HH}^{\bullet,*}(\Lambda,\Lambda[t^{\pm 1}])=0.$
 - 5. The **stable center** $\underline{Z}(\Lambda) = Z(\Lambda)/{\{\Lambda \to \Lambda^e \to \Lambda\}} = 0$.
 - 6. Λ is semisimple.
- 7. Λ = ℂ.
- 8. $\Lambda[t^{\pm 1}]$ is intrinsically formal.

A graded algebra B is *instrinsically formal* if, given DGAs A₁, A₂

$$H^*(A_1) = H^*(A_2) = B \implies A_1 \simeq A_2.$$

A graded algebra B is **instrinsically formal** if, given DGAs A₁, A₂

$$H^*(A_1) = H^*(A_2) = B \implies A_1 \simeq A_2.$$

A Massey algebra (B, m) consists of a graded algebra B = B^{even}

$$m \in HH^{4,-2}(B,B), \qquad \frac{1}{2}[m,m] = 0.$$

The Massey algebra of Λ^{dg} is

 $(\Lambda[t^{\pm 1}], \{m_4\}),$

and similarly for DGAs A with $H^*(A) = H^{even}(A)$.

A graded algebra B is **instrinsically formal** if, given DGAs A₁, A₂

$$H^*(A_1) = H^*(A_2) = B \implies A_1 \simeq A_2.$$

A *Massey algebra* (B, m) consists of a graded algebra B = B^{even}

$$m \in HH^{4,-2}(B,B), \qquad \frac{1}{2}[m,m] = 0.$$

The Massey algebra of Λ^{dg} is

 $(\Lambda[t^{\pm 1}], \{m_4\}),$

and similarly for DGAs A with $H^*(A) = H^{even}(A)$.

A Massey algebra (B, m) is **instrinsically formal** if, given A_1, A_2

$$H^*(A_1) = H^*(A_2) = B, \ \{m_4^{A_1}\} = \{m_4^{A_2}\} = m \implies A_1 \simeq A_2.$$

The Hochschild complex of a Massey algebra (B, m) is

$$C^{\bullet,*}(B,m)=HH^{\bullet,*}(B,B),\qquad \partial=[m,-].$$

The Hochschild cohomology is denoted by

HH^{•,*}(*B*, *m*).

The Hochschild complex of a Massey algebra (B, m) is

$$C^{\bullet,*}(B,m)=HH^{\bullet,*}(B,B),\qquad \partial=[m,-].$$

The Hochschild cohomology is denoted by

HH^{•,*}(*B*, *m*).

Theorem

 $HH^{n,2-n}(B,m) = 0, n > 4 \Rightarrow (B,m)$ is intrinsically formal.

Related to the A_{∞} -obstruction theory of **muro_2020_enhanced_obstruction_theory**.

The Hochschild complex of a Massey algebra (B, m) is

$$C^{\bullet,*}(B,m)=HH^{\bullet,*}(B,B),\qquad \partial=[m,-].$$

The Hochschild cohomology is denoted by

HH^{•,*}(*B*, *m*).

Theorem

 $HH^{n,2-n}(B,m) = 0, n > 4 \Rightarrow (B,m)$ is intrinsically formal.

Related to the A_{∞} -obstruction theory of **muro_2020_enhanced_obstruction_theory**.

Proposition $HH^{n,t}(\Lambda[t^{\pm 1}], \{m_4\}) = 0 \text{ for } n > 4 \text{ and } t \in \mathbb{Z}.$

It follows from $j^*{m_4}$ being a Hochschild–Tate unit.

Example (The pagoda)

In this case

$$\Lambda = \frac{\mathbb{C}[y]}{(y^2)}, \qquad HH^{\bullet,*}(\Lambda[t^{\pm 1}], \Lambda[t^{\pm 1}]) = \frac{\mathbb{C}[y, \varphi, \psi, t^{\pm 1}, \delta]}{(y^2, y\varphi, y\psi)},$$

 $|\varphi| = (1,0), \quad |\psi| = (2,0), \quad |t| = (0,-2), \quad |\delta| = (1,0),$

where $\delta(t) = -t$ and $\delta(\Lambda) = 0$. The UMP is $\{m_4\} = \psi^2 t$, the differential $[\psi^2 t, -]$ vanishes on generators except for

$$[\psi^2 t, \delta] = \psi^2 t.$$

In Hochschild degrees > 4, there is a null-homotopy

$$x \mapsto \delta \psi^{-2} t^{-1} x.$$

Let $d \ge 1$ and let k be a **perfect field**. There are bijective correspondence between:

- 1. Quasi-isomorphism classes of DG-algebras A such that:
 - a. $H^0(A)$ is basic and finite-dimensional.
 - b. $A \in perf(A)$ is $d\mathbb{Z}$ -cluster tilting.
- 2. Equivalence classes of pairs (\mathcal{T}, c) with:
 - a. $\ensuremath{\mathbb{T}}\xspace$ a Hom-finite Karoubian algebraic triangulated category.
 - b. $c \in \mathcal{T}$ basic $d\mathbb{Z}$ -cluster tilting.
- 3. Isomorphism classes of pairs (A, I) where:
 - a. A is a basic self-injective finite-dimensional algebra.
 - b. *I* is an invertible Λ -bimodule stably isomorphic to $\Omega_{\Lambda^e}^{d+2}(\Lambda)$.

Let *d* ≥ 1 and let *k* be a *perfect field*. There are bijective correspondence between:

- 1. Quasi-isomorphism classes of DG-algebras A such that:
 - a. $H^0(A)$ is basic and finite-dimensional.
 - b. $A \in perf(A)$ is $d\mathbb{Z}$ -cluster tilting.
- 2. Equivalence classes of pairs (T, c) with:
 - a. $\ensuremath{\mathbb{T}}\xspace$ a Hom-finite Karoubian algebraic triangulated category.

 $\mathcal{T} = perf(A)$

c = A

- b. $c \in \mathcal{T}$ basic $d\mathbb{Z}$ -cluster tilting.
- 3. Isomorphism classes of pairs (A, I) where:
 - a. A is a basic self-injective finite-dimensional algebra.
 - b. *I* is an invertible Λ -bimodule stably isomorphic to $\Omega_{\Lambda^e}^{d+2}(\Lambda)$.

Let *d* ≥ 1 and let *k* be a *perfect field*. There are bijective correspondence between:

- 1. Quasi-isomorphism classes of DG-algebras A such that:
 - a. $H^0(A)$ is basic and finite-dimensional.
 - b. $A \in perf(A)$ is $d\mathbb{Z}$ -cluster tilting.
- 2. Equivalence classes of pairs (T, c) with:
 - a. Ta Hom-finite Karoubian *algebraic* triangulated category.

T = perf(A) c = A

- b. $c \in \mathcal{T}$ basic $d\mathbb{Z}$ -cluster tilting $\Rightarrow \mathcal{T} = \langle c \rangle$.
- Isomorphism classes of pairs (Λ, I) where:
 a. Λ is a basic self-injective finite-dimensional algebraic
 - b. *I* is an invertible Λ -bimodule stably isomorphic to $\Omega_{\Lambda^e}^{d+2}(\Lambda)$.

Let $d \ge 1$ and let k be a **perfect field**. There are bijective correspondence between: **injectivity is uniqueness of enhancements!**

- 1. Quasi-isomorphism classes of DG-algebras A such that:
 - a. $H^0(A)$ is basic and finite-dimensional.
 - b. $A \in perf(A)$ is $d\mathbb{Z}$ -cluster tilting.
- 2. Equivalence classes of pairs (T, c) with:
 - a. Ta Hom-finite Karoubian *algebraic* triangulated category.

T = perf(A) c = A

- b. $c \in \mathcal{T}$ basic $d\mathbb{Z}$ -cluster tilting $\Rightarrow \mathcal{T} = \langle c \rangle$.
- Isomorphism classes of pairs (Λ, I) where:
 a. Λ is a basic self-injective finite-dimensional algebra by the self-injective stably isomorphic to
 - b. T is an invertible Λ -bimodule stably isomorphic to $\Omega_{\Lambda^e}^{u+2}(\Lambda)$.

Let $d \ge 1$ and let k be a **perfect field**. There are bijective correspondence between:

- Quasi-isomorphism classes of DG-algebras A such that:
 a. H⁰(A) is basic and finite-dimensional.
 b. A ∈ perf(A) is dℤ-cluster tilting
- 2. Equivalence classes of pairs (T, c) with:
 - a. $\ensuremath{\mathbb{T}}\xspace$ a Hom-finite Karoubian algebraic triangulated category.

 $\Lambda = \mathcal{T}(c,c)$

 $I = \mathcal{T}(c[d], c)$

- b. $c \in \mathcal{T}$ basic $d\mathbb{Z}$ -cluster tilting.
- 3. Isomorphism classes of pairs (A, I) where:
 - a. A is a basic self-injective finite-dimensional algebra.
 - b. *I* is an invertible Λ -bimodule stably isomorphic to $\Omega_{\Lambda^e}^{d+2}(\Lambda)$.

Let *d* ≥ 1 and let *k* be a *perfect field*. There are bijective correspondence between:

- Quasi-isomorphism classes of DG-algebras A such that:
 a. H⁰(A) is basic and finite-dimensional.
 b. A = porf(A) is dZ-cluster tilting
- 2. Equivalence classes of pairs (\mathcal{T}, c) with:
 - a. $\ensuremath{\mathbb{T}}\xspace$ a Hom-finite Karoubian algebraic triangulated category.
 - b. $c \in \mathcal{T}$ basic $d\mathbb{Z}$ -cluster tilting.
- 3. Isomorphism classes of pairs (Λ, I) where:
 - a. A is a basic **self-injective** finite-dimensional algebra.
 - b. *I* is an *invertible* Λ -bimodule *stably isomorphic to* $\Omega_{\Lambda^e}^{d+2}(\Lambda)$.

well defined?

 $\Lambda = \Im(c, c)$ $I = \Im(c[d], c)$

Let *d* ≥ 1 and let *k* be a *perfect field*. There are bijective correspondence between:

- 1. Quasi-isomorphism classes of DG-algebras A such that:
 - a. $H^0(A)$ is basic and finite-dimensional.
 - b. $A \in perf(A)$ is $d\mathbb{Z}$ -cluster tilting.
- 2. Equivalence classes of pairs (T, c) with:
 - a. T a Hom-finite Karoubian algebraic triangulated category b. $c \in T$ basic $d\mathbb{Z}$ -cluster tilting.
- 3. Isomorphism classes of pairs (A, I) where:
 - a. A is a basic **self-injective** finite-dimensional algebra.
 - b. I is an **invertible** Λ -bimodule **stably isomorphic to** $\Omega_{\Lambda^e}^{d+2}(\Lambda)$

 $\Lambda = H^0(A)$ $I = H^{-d}(A)$

References I