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Contraction algebras

𝑅 complete local isolated compound Du Val (cDV) singularity
with smooth minimal model.

𝒯 = 𝐷sg(𝑅) = 𝐷b(𝑅)/perf(𝑅) singularity category.

{Minimal models 𝑌 → 𝑋 = Spec(𝑅)}

{2ℤ-cluster tilting objects 𝑐 ∈ 𝒯 }

{Derived equivalence class of finite-dimensional basic algebras Λ }

Λ=𝒯(𝑐,𝑐) contraction algebra
(donovan_wemyss_2016_noncommutative_deformations_flops)

(wemyss_2018_flops_clusters_homological)

(august_2020_finiteness_derived_equivalence)



The Donovan–Wemyss conjecture

Conjecture (donovan_wemyss_2016_noncommutative_deformations_flops,
august_2020_finiteness_derived_equivalence)
Given complete isolated cDV singularities 𝑅1, 𝑅2 with smooth
minimal models and contraction algebras Λ1, Λ2,

𝑅1 ≅ 𝑅2 ⟺𝐷(Λ1) ≃ 𝐷(Λ2).

⦁ ⇒ follows from
wemyss_2018_flops_clusters_homological and
dugas_2015_construction_derived_equivalent.

⦁ ⇐ follows from
hua_keller_2021_cluster_categories_rational and
jasso_muro_2022_triangulated_auslander_iyama, as
noticed by Keller.

By august_2020_finiteness_derived_equivalence, in⇐ we
can assume Λ1 ≅ Λ2.



2ℤ-derived contraction algebras

Take the derived endomorphism DG algebra of 𝑐 ∈ 𝒯 instead.
We call it 2ℤ-derived contraction algebra,

Λdg = ℝ𝒯(𝑐, 𝑐), Λ = 𝐻0(Λdg), 𝒯 = perf(Λdg).

Theorem (hua_keller_2021_cluster_categories_rational)
Given an isolated cDV singularity

𝑅 =
ℂ[[𝑢, 𝑣, 𝑥, 𝑦]]

(𝑓)

with smooth minimal model

𝐻𝐻0(Λdg, Λdg) =
ℂ[[𝑢, 𝑣, 𝑥, 𝑦]]

(𝑓, 𝜕𝑓𝜕𝑢 ,
𝜕𝑓
𝜕𝑣 ,

𝜕𝑓
𝜕𝑥 ,

𝜕𝑓
𝜕𝑦 )

Tyurina algebra.



2ℤ-derived contraction algebras

Corollary (hua_keller_2021_cluster_categories_rational)
Given complete local isolated cDV 𝑅1, 𝑅2 with smooth minimal
models and 2ℤ-derived contraction algebras Λdg1 , Λ

dg
2 ,

Λdg1 ≃ Λdg2 ⇒ 𝑅1, 𝑅2 have the same Tyurina algebra
⇒ 𝑅1 ≅ 𝑅2 (mather_yau_1982_classification_isolated_hypersurface).



What remains to be proved

We start with results from
jasso_muro_2022_triangulated_auslander_iyama.

Theorem
Given complete local isolated cDV 𝑅1, 𝑅2 with smooth minimal
models, contraction algebras Λ1, Λ2 and 2ℤ-derived contraction
algebras Λdg1 , Λ

dg
2 ,

Λ1 ≅ Λ2 ⇒ Λdg1 ≃ Λdg2 .

In order to prove this theorem we must answer the following
question.

Question
Can we recover Λdg from Λ = 𝐻0(Λ)?



The cohomology of Λdg

⦁ Recall that Λdg = ℝ𝒯(𝑐, 𝑐).

⦁ 𝐻𝑛(Λdg) = 𝒯(𝑐, 𝑐[𝑛]).
⦁ 𝒯(𝑐, 𝑐[odd]) = 0 since 𝑐 is 2ℤ-cluster tilting.
⦁ [2] = id𝒯 since Spec(𝑅) is a hypersurface.
⦁ 𝒯(𝑐, 𝑐[even]) = 𝒯(𝑐, 𝑐) = Λ.
⦁ 𝐻∗(Λdg) = Λ[𝑡±1], |𝑡| = −2, concentrated in even degrees.

Question
Can we recover Λdg from 𝐻∗(Λ) = Λ[𝑡±1]?
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Formality

A DGA 𝐴 is formal if 𝐴 ≃ 𝐻∗(𝐴).

A graded algebra 𝐵 is intrinsically formal if any DGA 𝐴 with
𝐻∗(𝐴) = 𝐵 is formal.

Theorem (kadeishvili_1988_structure_infty_algebra)
𝐻𝐻𝑛,2−𝑛(𝐵, 𝐵) = 0, 𝑛 > 2 ⇒ 𝐵 is intrinsically formal.

Theorem
Given a complete local isolated cDV singularity 𝑅 with contrac-
tion algebra Λ, TFAE:
1. Λ[𝑡±1] is intrinsically formal .
2. Λ = ℂ.
3. 𝑅 = ℂ[[𝑢, 𝑣, 𝑥, 𝑦]]/(𝑢𝑣 − 𝑥𝑦).
4. 𝑓∶ 𝑌 → 𝑋 is the Atiyah flop.
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𝐴∞-algebras

An A∞-algebra (𝐴,𝑚1, 𝑚2, 𝑚3, … ) is a graded vector space 𝐴
equipped with operations

𝑚𝑛 ∶ 𝐴⊗
𝑛⋯ ⊗𝐴⟶ 𝐴, |𝑚𝑛| = 2 − 𝑛, 𝑛 ≥ 1,

satisfying some equations:

⦁ (𝐴,𝑚1) is a complex, 𝑚2
1 = 0;

⦁ 𝑥𝑦 = 𝑚2(𝑥, 𝑦) satisfies the Leibniz rule w.r.t. 𝜕 = 𝑚1,

𝜕(𝑥𝑦) = 𝜕(𝑥)𝑦 + (−1)|𝑥|𝑥𝜕(𝑦);

⦁ the product 𝑚2 is associative up to the homotopy 𝑚3;
⦁ …

In particular 𝐻∗(𝐴) is a graded algebra.



𝐴∞-algebras

A∞-algebras

DG-algebras
𝑚>2 = 0

minimal ones
𝑚1 = 0



Minimal 𝐴∞-models

A minimal 𝐴∞-model of Λdg looks like

(Λ[𝑡±1],𝑚4, 𝑚6, 𝑚8, … ).

Example (The pagoda)
Consider

𝑅 =
ℂ[[𝑢, 𝑣, 𝑥, 𝑦]]

(𝑢𝑣 − (𝑥 − 𝑦2)(𝑥 + 𝑦2))
, Λ =

ℂ[𝑦]
(𝑦2)

,

Λdg = ℂ[𝑦]⟨𝑤±1⟩, |𝑦| = 0, |𝑤| = −1, 𝑑(𝑦) = 0, 𝑑(𝑤) = 𝑦2,

and for 𝑛 ≥ 4 the only non-trivial 𝑚𝑛 is

Λ[𝑡±1] =
ℂ[𝑦, 𝑡±1]
(𝑦2)

, 𝑚4(𝑦𝑡𝑎, 𝑦𝑡𝑏, 𝑦𝑡𝑐, 𝑦𝑡𝑑) = 𝑡𝑎+𝑏+𝑐+𝑑+1.
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Hochschild cohomology

The Hochschild cohomology of a graded algebra 𝐵 with
coefficients on an 𝐵-bimodule 𝑀 is

𝐻𝐻⦁,∗(𝐵,𝑀) = Ext⦁,∗𝐵𝑒 (𝐵,𝑀).

⦁ = Hochschild degree = extension length.
∗ = inner degree, coming from the fact that 𝐴 is graded.

It is the cohomology of the Hochschild complex

𝐶𝑛(𝐵,𝑀) = Homℂ(𝐵⊗
𝑛⋯ ⊗𝐵,𝑀).

The 𝐴∞-operations of (Λ[𝑡±1],𝑚4, 𝑚6, 𝑚8, … ) are Hochschild
cochains

𝑚𝑛 ∈ 𝐶𝑛,2−𝑛(Λ[𝑡±1], Λ[𝑡±1]).



Universal Massey products

The universal Massey product (UMP) of Λdg is

{𝑚4} ∈ 𝐻𝐻4,−2(Λ[𝑡±1], Λ[𝑡±1]).

If 𝑗∶ Λ ↪ Λ[𝑡±1] is the degree 0 inclusion, the restriected UMP is

𝑗∗{𝑚4} ∈ 𝐻𝐻4,−2(Λ, Λ[𝑡±1]) = 𝐻𝐻4(Λ, Λ ⋅ 𝑡) = Ext4Λ𝑒(Λ, Λ).

Theorem
The restricted UMP 𝑗∗{𝑚4} can be represented by an extension

Λ ↪ 𝑃4 → 𝑃3 → 𝑃2 → 𝑃1 ↠ Λ

with 𝑃𝑖 projective Λ-bimodules 𝑖 = 1, 2, 3, 4.

This is connected to 4-angulated categories in the sense of
geiss_keller_oppermann_2013_angulated_categories.
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Universal Massey products

Example (The pagoda)
In this case

Λ =
ℂ[𝑦]
(𝑦2)

, Ext⦁Λ𝑒(Λ, Λ) =
ℂ[𝑦, 𝜑,𝜓]
(𝑦2, 𝑦𝜑, 𝑦𝜓)

, |𝜑| = 1, |𝜓| = 2,

where 𝜑(𝑦) = 𝑦, 𝜓(𝑦, 𝑦) = 1. Moreover, 𝜓 is represented by

0 → Λ
1⊗𝑦+𝑦⊗1
−−−−−−−−−−→ Λ𝑒

1⊗𝑦−𝑦⊗1
−−−−−−−−−−→ Λ𝑒

product
−−−−−−−−−→ Λ → 0

and 𝑗∗{𝑚4} = 𝜓2 is obtained by splicing this extension with it-
self.



Hochschild–Tate cohomology

Since Λ is self-injective, we can define its Hochschild–Tate
cohomology with coefficients in a Λ-bimodule 𝑀

𝐻𝐻⦁(Λ,𝑀) = Ext⦁Λ𝑒(Λ,𝑀)

from a periodic resolution of Λ as a Λ-bimodule.

𝐻𝐻>0(Λ,𝑀) = 𝐻𝐻>0(Λ,𝑀).

The previous theorem is equivalent to:

Theorem
The rUMP 𝑗∗{𝑚4} is a bidegree (4, −2) unit in 𝐻𝐻⦁,∗(Λ, Λ[𝑡±1]).



Hochschild–Tate cohomology

Example (The pagoda)
In this case

Λ =
ℂ[𝑦]
(𝑦2)

, 𝐻𝐻⦁,∗(Λ, Λ[𝑡±1]) = ℂ[𝜑,𝜓±1, 𝑡±1],

with

|𝜑| = (1, 0), |𝜓| = (2, 0), |𝑡| = (0, −2),

and 𝑗∗{𝑚4} = 𝜓2𝑡 is obviously a unit.



Hochschild–Tate cohomology

Corollary
TFAE:
1. Λdg is formal.
2. {𝑚4} = 0.
3. 𝐻𝐻⦁,∗(Λ, Λ[𝑡±1]) has a trivial unit.
4. 𝐻𝐻⦁,∗(Λ, Λ[𝑡±1]) = 0.
5. The stable center 𝑍(Λ) = 𝑍(Λ)/{Λ → Λ𝑒 → Λ} = 0.
6. Λ is semisimple.
7. Λ = ℂ.
8. Λ[𝑡±1] is intrinsically formal.



Intrinsical formal-ish-ty

A graded algebra 𝐵 is instrinsically formal if, given DGAs 𝐴1, 𝐴2

𝐻∗(𝐴1) = 𝐻∗(𝐴2) = 𝐵 ⟹ 𝐴1 ≃ 𝐴2.

A Massey algebra (𝐵,𝑚) consists of a graded algebra 𝐵 = 𝐵even

𝑚 ∈ 𝐻𝐻4,−2(𝐵, 𝐵), 1
2
[𝑚,𝑚] = 0.

The Massey algebra of Λdg is

(Λ[𝑡±1], {𝑚4}),
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The Hochschild complex of a Massey algebra (𝐵,𝑚) is

𝐶⦁,∗(𝐵,𝑚) = 𝐻𝐻⦁,∗(𝐵, 𝐵), 𝜕 = [𝑚, −].

The Hochschild cohomology is denoted by

𝐻𝐻⦁,∗(𝐵,𝑚).

Theorem
𝐻𝐻𝑛,2−𝑛(𝐵,𝑚) = 0, 𝑛 > 4 ⇒ (𝐵,𝑚) is intrinsically formal.

Related to the 𝐴∞-obstruction theory of
muro_2020_enhanced_obstruction_theory.

Proposition
𝐻𝐻𝑛,𝑡(Λ[𝑡±1], {𝑚4}) = 0 for 𝑛 > 4 and 𝑡 ∈ ℤ.

It follows from 𝑗∗{𝑚4} being a Hochschild–Tate unit.
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Example (The pagoda)
In this case

Λ =
ℂ[𝑦]
(𝑦2)

, 𝐻𝐻⦁,∗(Λ[𝑡±1], Λ[𝑡±1]) =
ℂ[𝑦, 𝜑,𝜓, 𝑡±1, 𝛿]
(𝑦2, 𝑦𝜑, 𝑦𝜓)

,

|𝜑| = (1, 0), |𝜓| = (2, 0), |𝑡| = (0, −2), |𝛿| = (1, 0),

where 𝛿(𝑡) = −𝑡 and 𝛿(Λ) = 0. The UMP is {𝑚4} = 𝜓2𝑡, the differ-
ential [𝜓2𝑡, −] vanishes on generators except for

[𝜓2𝑡, 𝛿] = 𝜓2𝑡.

In Hochschild degrees > 4, there is a null-homotopy

𝑥 ↦ 𝛿𝜓−2𝑡−1𝑥.



The triangulated Auslander–Iyama correspondence

Theorem
Let 𝑑 ≥ 1 and let 𝑘 be a perfect field. There are bijective corre-
spondence between:
1. Quasi-isomorphism classes of DG-algebras 𝐴 such that:

a. 𝐻0(𝐴) is basic and finite-dimensional.
b. 𝐴 ∈ perf(𝐴) is 𝑑ℤ-cluster tilting.

2. Equivalence classes of pairs (𝒯, 𝑐) with:
a. 𝒯 a Hom-finite Karoubian algebraic triangulated category.
b. 𝑐 ∈ 𝒯 basic 𝑑ℤ-cluster tilting.

3. Isomorphism classes of pairs (Λ, 𝐼) where:
a. Λ is a basic self-injective finite-dimensional algebra.
b. 𝐼 is an invertible Λ-bimodule stably isomorphic to Ω𝑑+2Λ𝑒 (Λ).
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