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Preliminaries

Let k be a commutative ring.

Let T be a k -linear, additive, idempotent complete category.

A (right) T -module M is a k -linear functor M : T op → Mod- k . It is
finitely presented or coherent if there exists an exact sequence

T (−, X ) −→ T (−, Y ) −→ M → 0.

Let mod- T be the category of coherent T -modules.

Theorem (Freyd’66)
If T is triangulated then mod- T is a Frobenius abelian category and T
is the full subcategory of injective-projective objects.

Assume that mod- T is a Frobenius . . .

Let Σ: T ∼→ T be a k -linear equivalence, called suspension or
translation.
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Massey products

A Massey product or secondary composition sends

X
f //

0

��~
t

i _ U J
@

Y
g
//

0

@@@
J

U _ i t
~

Z
h // U in T

to
〈h, g, f 〉 ⊂ T (ΣX , U),

a coset of

h · T (ΣX , Z ) + T (ΣY , U) · (Σf ) ⊂ T (ΣX , U),

the indeterminacy submodule.
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Massey products

Moreover, given composable morphisms (without vanishing conditions)

X f−→ Y
g−→ Z h−→ U i−→ V ,

the following inclusions hold whenever the Massey products are
defined,

〈i , h, g〉 · (Σf ) ⊂ 〈i , h, g · f 〉 ⊂ 〈i , h · g, f 〉 ⊃ 〈i · h, g, f 〉 ⊃ i · 〈h, g, f 〉.

The set of Massey products is a k -module,

MP(T ,Σ).
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Massey products

Theorem (Heller’68)
If T is triangulated there is a unique Massey product such that for any
exact triangle

X f−→ Y i−→ C
q−→ ΣX

we have
1ΣX ∈ 〈q, i , f 〉 ⊂ T (ΣX ,ΣX ).

This defines an inclusion

{triangulated structures on (T ,Σ)} ⊂ MP(T ,Σ).

skip proof
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Massey products

Idea of the proof.

X
f //

0

  z
q

h _ V M
D

Y
g
//

0

>>D
M

V _ h q
z

Z
h // U

exact

A triangle X f−→ Y i−→ C
q−→ ΣX is exact if and only if

T (−, X )
f∗−→ T (−, Y )

i∗−→ T (−, C)
q∗−→ T (−,ΣX )

(Σf )∗−→ T (−,ΣY )

is an exact sequence of T -modules and 1ΣX ∈ 〈q, i , f 〉.
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Massey products
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Heller’s theory

When is a Massey product induced by a triangulated structure?

Let mod- T be the stable category of coherent T -modules,

HomT (M, N) =
HomT (M, N)

{M → T (−, X ) → N}
.

The stable category is triangulated. The translation functor

S : mod- T −→ mod- T

is determined by the choice of short exact sequences in mod- T ,

0 → M −→ T (−, CM) −→ SM → 0.
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Heller’s theory

The functor Σ extends in an essentially unique way,

T Σ
∼

//

Yoneda
��

T
Yoneda
��

mod- T Σ
∼
//

����

mod- T

����

exact

mod- T Σ
∼
// mod- T triangle

Fernando Muro On Massey products and triangulated categories



Heller’s theory

Theorem (Heller’68)
There is a bijective correspondence between Puppe triangulated
structures on (T ,Σ) and natural isomorphisms δ : Σ ∼= S3 such that for
any coherent T -module M,

ΣSM
δSM //

∼=
$$H

HHHHHHHH

−1
S4M

SΣM
SδM

;;vvvvvvvvv

Theorem
There is an isomorphism which sends the Massey product of a
triangulation on (T ,Σ) to Heller’s natural isomorphism,

MP(T ,Σ) ∼= Hom(Σ, S3).

skip proof
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Heller’s theory

Idea of the proof.
Let 〈−,−,−〉 be a Massey product. We need to define a morphism
δM : ΣM → S3M for any coherent T -module M.

T (−, CM)
f //

�� ��
??

??
??

?
T (−, CSM)

g
//

�� ��
??

??
??

? T (−, CS2M)
h //

�� ��
??

??
??

T (−, CS3M)

M
/�

??�������
SM

/�

??�������
S2M

/�

??������
S3M

/�

??������
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Heller’s theory

Idea of the proof.
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An example of Heller’s theory

Let T = F(Z/4) be the category of finitely generated free
Z/4-modules and Σ = 1F(Z/4) the identity functor.

In this case mod- T = mod- Z/4, mod- T = F(Z/2) and S = 1F(Z/2).

MP(F(Z/4), 1F(Z/4)) ∼= Hom(1F(Z/2), 1F(Z/2)) ∼= Z/2.

Theorem (M.-Schwede-Strickland’07)
The non-trivial Massey product in (F(Z/4), 1F(Z/4)) is induced by a
Verdier triangulated structure where the triangle

Z/4 2−→ Z/4 2−→ Z/4 2−→ Z/4

is exact.
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Hochschild-Mitchell cohomology

A T -bimodule is a T ⊗ T op-module.

The bar complex C∗(T ) is the complex of T -bimodules

C∗(T ) =
⊕

X0,...,Xn

T (X0,−)⊗ · · · ⊗ T (Xi , Xi−1)⊗ · · · ⊗ T (−, Xn),

with differential

∂(α0 ⊗ · · · ⊗ αn+1) =
n∑

i=0

(−1)iα0 ⊗ · · · ⊗ (αiαi+1)⊗ · · · ⊗ αn+1.

The Hochschild-Mitchell cohomology of T with coefficients in M,

HH∗(T , M),

is the cohomology of

C∗(T , M) = HomT -bimod(C∗(T ), M).
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Hochschild-Mitchell cohomology

Example
T = T (−,−) is a T -bimodule, and we denote

HH∗(T ) = HH∗(T , T ).

More generally, for any q ∈ Z we consider

HHp,q(T ) = HHp(T , T (−,Σq)) = HHp(T , T (Σ−q,−)).

We also consider the (mod- T )-bimodules

Extq,r
T = ExtqT (−,Σr ) ∼= ExtqT (Σ−r ,−), q ≥ 0, r ∈ Z,

and the cohomology
HHp(mod- T , Extq,r

T ).
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T = ExtqT (−,Σr ) ∼= ExtqT (Σ−r ,−), q ≥ 0, r ∈ Z,

and the cohomology
HHp(mod- T , Extq,r

T ).
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Baues-Wirsching cohomology

The Baues-Wirsching cohomology of T with coefficients in M,

H∗(T , M),

is the cohomology of the ‘group ring’ k -category k [T ] obtained by
taking free k -modules on morphism pointed sets,

k [T ](X , Y ) = free k -module on T (X , Y ).

The natural k -linear functor k [T ] → T induces a homomorphism

HH∗(T , M) −→ H∗(T , M).

Example

We consider Hp,q(T ) = Hp(T , T (Σ−q,−)) and Hp(mod- T , Extq,r
T ).
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Massey products and H3

A Baues-Wirsching (3,−1)-cocycle z3,−1 of T sends any three
composable morphisms

X f−→ Y
g−→ Z h−→ U

to an element
z3,−1(h, g, f ) ∈ T (ΣX , U),

in such a way that

i · z3,−1(h, g, f )− z3,−1(i · h, g, f ) + z3,−1(i , h · g, f )
−z3,−1(i , h, g · f ) + z3,−1(i , h, g) · (Σf ) = 0.

It is a Hochschild-Mitchell cocycle if z3,−1 is k -multilinear.
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Massey products and H3

Lemma
Given a Baues-Wirsching (3,−1)-cocycle z3,−1 there is defined a
unique Massey product in (T ,Σ) such that

z3,−1(h, g, f ) ∈ 〈h, g, f 〉 ⊂ T (ΣX , U).

This defines a homomorphism

HH3,−1(T ) −→ H3,−1(T ) −→ MP(T ,Σ).
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Massey products and H3

Theorem (Pirashvili’88, Baues-Dreckmann’89)
The Massey product of a topological triangulated category is in the
image of

H3,−1(T ) −→ MP(T ,Σ).

The Massey product of a locally projective algebraic triangulated
category is in the image of

HH3,−1(T ) −→ MP(T ,Σ).

skip proof

Is there any triangulated category whose Massey product does
not come from HH3,−1 or H3,−1?
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Massey products and H3

Idea of the proof.
Let M be a topological or algebraic model of T such that T ⊂ D(M)
as a full triangulated subcategory. There is defined a derived
2-category D2(M), and a projection

D2(M) // // D(M) ⊃ T .
dd t

mf_XQ
J

The obstruction to the existence of a splitting pseudofunctor is

〈D2(M)〉|T ∈ H3,−1(T ) universal Massey product

and maps to the Massey product of T by

H3,−1(T ) −→ MP(T ,Σ).
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Massey products and H0

Proposition
There is an isomorphism

MP(T ,Σ) ∼= H0(mod- T , Ext3,−1
T ).

skip proof

Proof.

MP(T ,Σ) ∼= Hom(Σ, S3)
∼= H0(mod- T , HomT (Σ, S3))

∼= H0(mod- T , Ext3,−1
T ),

since HomT (ΣM, S3N) ∼= Ext3T (ΣM, N) and mod- T � mod- T is full
and the identity on objects.
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Massey products and H0

Theorem (Ulmer’69 + Jibladze-Pirashvili’91, Lowen-van den Bergh’05)

There is a spectral sequence for any r ∈ Z,

Hp(mod- T , Extq,r
T ) =⇒ Hp+q,r (T ),

and also for HH∗ if for instance k is a field.

Proposition
The following diagram commutes (also for HH∗ if k is a field).

H0(mod- T , Ext3,−1
T )

H3,−1(T )

edge
55kkkkkkkkkkkkkk

the previous one
// MP(T ,Σ)

∼=

OO
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The example F(Z/4)

Theorem
For (F(Z/4), 1F(Z/4)) the edge homomorphism is trivial.

Z/2 ∼= HML3(Z/4) ∼= H3,−1(F(Z/4))
0−→ H0(mod- Z/4, Ext3,−1

Z/4 ) ∼= Z/2.

Corollary (M.-Schwede-Strickland’07)
The triangulated category F(Z/4) does not have any algebraic or
topological model.

When does a triangulated category have a model? Is there an
obstruction theory for the existence of models of any kind?
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Stable Massey products

A Massey product on (T ,Σ) is stable if

〈Σh,Σg,Σf 〉 = −Σ〈h, g, f 〉.

Therefore the submodule of stable Massey products MPs(T ,Σ) is the
kernel of

MP(T ,Σ) ∼= HH0(mod- T , Ext3,−1
T )

Σ−1
∗ Σ∗+1−→ HH0(mod- T , Ext3,−1

T ).

Moreover,

{triangulated structures on (T ,Σ)} ⊂ MPs(T ,Σ) ⊂ MP(T ,Σ).
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Cohomology of graded categories

Let k be a field and TΣ the Z-graded k -category with

TΣ(X , Y )n = T (X ,ΣnY ), n ∈ Z.

A TΣ-bimodule is a degree 0 functor T op
Σ ⊗ TΣ → ModZ- k to Z-graded

k -modules.

The bar complex C∗(TΣ) is now a complex of TΣ-bimodules.

Given a TΣ-bimodule M the Hochschild-Mitchell cohomology

HHp,q(TΣ, M),

is the pth cohomology of

C∗(TΣ, M[q]) = HomTΣ -bimod(C∗(TΣ), M[q]).

Example
TΣ = TΣ(−,−) is a TΣ-bimodule and HHp,q(TΣ) = HHp,q(TΣ, TΣ).
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Cohomology of graded categories

Proposition
For any q ∈ Z, the complex C∗(TΣ, TΣ[q]) is the homotopy fiber of

Σ−1
∗ Σ∗ + 1 : C∗(T , T (−,Σq)) −→ C∗(T , T (−,Σq)).

This homotopy fiber is strongly related to the stability equation for
Massey products,

Σ−1〈Σh,Σg,Σf 〉 = −〈h, g, f 〉.
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Cohomology of graded categories

Corollary
There is a long exact sequence for any q ∈ Z,

· · · → HHp,q(TΣ) → HHp,q(T )
Σ−1
∗ Σ∗+1−→ HHp,q(T ) → HHp+1,q(TΣ) → · · ·

Moreover, there is a commutative diagram

HH3,−1(T )
edge

// HH0(mod- T , Ext3,−1
T ) ∼= MP(T ,Σ)

HH3,−1(TΣ)

OO

// MPs(T ,Σ)
?�

OO
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A∞-categories

An element {m3} ∈ HH3,−1(TΣ) is the same as an A4-category
structure (m1 = 0, m2, m3) in TΣ, with m2 the composition in TΣ.

An A∞-category A consists of
Objects X , Y , . . .
Morphism Z-graded k -modules A(X , Y ),
Identity morphisms idX ∈ A(X , X )0,
n-Fold composition law, n ≥ 1,

mn : A(X1, X0)⊗ · · · ⊗ A(Xn, Xn−1) −→ A(Xn, X0),

deg(mn) = 2− n.
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deg(mn) = 2− n.
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A∞-categories

The composition laws must satisfy the following equations,

0 =
∑

j+p+q=n

i=j+1+q

(−1)jp+qmi(1⊗j ⊗mp ⊗ 1⊗q), n ≥ 1.

n = 1, m2
1 = 0, i.e. A(X , Y ) are complexes.

n = 2,
m1m2 = m2(1⊗m1 + m1 ⊗ 1),

i.e. m1 is a derivation for the product m2.
n = 3,

m2(m2⊗1−1⊗m2) = m1m3+m3(1⊗1⊗m1+1⊗m1⊗1+m1⊗1⊗1),

i.e. m2 is associative up to homotopy.
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A∞-categories

An A∞-category is pretriangulated if the full subcategory of the derived
category H0A ⊂ D(A) is a triangulated subcategory.

An A∞-category is minimal if m1 = 0.

Proposition (Lefèvre-Hasegawa’03)

A compactly generated algebraic triangulated k-category T is H0A of
a minimal pretringulated A∞-category A.

The underlying Z-graded k -category of A is actually TΣ, so in order to
reconstruct A one just has to find m3, m4, . . .
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A∞-obstructions for triangulated categories

The existence of m3 is equivalent to say that the Massey product of T
is in the image of the composite

HH3,−1(TΣ) −→ HH3,−1(T )
edge−→ HH0(mod- T , Ext3,−1

T ) ∼= MP(T ,Σ).

In order to check this fact, one can use the spectral sequence

HHp(mod- T , Extq,r
T ) =⇒ HHp+q,r (T )

and the long exact sequence

· · · → HHp,q(TΣ) → HHp,q(T )
Σ−1
∗ Σ∗+1−→ HHp,q(T ) → HHp+1,q(TΣ) → · · ·
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A∞-obstructions for triangulated categories

Lemma (Lefèvre-Hasegawa’03)
Let n ≥ 5. Given a minimal An−1-category structure on TΣ, defined by

(m1 = 0, m2, m3, . . . , mn−2),

there is a well-defined

θ(m3,...,mn−2) ∈ HHn,3−n(TΣ),

which vanishes if and only if there exists mn−1 such that

(m1 = 0, m2, m3, . . . , mn−2, mn−1)

is an An-category structure on TΣ.
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Summing up the A∞-obstruction theory

Let T be triangulated ! δ ∈ H0(mod- T , Ext3,−1
T ).

δ must be a perm. cycle of HHp(mod- T , Extq,−1
T ) ⇒ HHp+q,−1(T ),

HH3,−1(T )
edge−→ H0(mod- T , Ext3,−1

T ),

∆ 7→ δ.

∆ must be in the kernel of HH3,−1(T )
Σ−1
∗ Σ∗+1−→ HH3,−1(T ), so

HH3,−1(TΣ) −→ HH3,−1(T ),

{m3} 7→ ∆.

The higher obstructions must vanish,

θ(m3,...,mn−2) ∈ Hn,3−n(TΣ), n ≥ 5.

Then T can be enhanced to an A∞-category defined over TΣ.
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Open questions

Find a Q-linear triangulated category T with non-vanishing
A∞-obstructions.
Extend the A∞-obstruction theory to an arbitrary commutative
ground ring k (by using Shukla cohomology).
Extend the A∞-obstruction theory to spectral categories (by using
topological Hochschild cohomology).
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