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Goal

Exhibiting triangulated categories
without models.
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Models

Let M be a model category with a zero object 0. Suspensions are
defined as

ΣX = homotopy cofiber of X → 0.

If the functor
Σ: HoM−→ HoM

is an equivalence then M is a stable model category.

Example
M = Sp the category of spectra or Ch(A) the category of chain
complexes in an abelian category A.
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Models

The axioms of a triangulated category encode the fundamental
properties of cofiber sequences in HoM,

A f−→ B i−→ Cof(f )
q−→ ΣA.
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Triangulated categories

Let T be an additive category and Σ: T ∼→ T a self-equivalence.

A candidate triangle is a sequence

A f−→ B i−→ C
q−→ ΣA

such that

if = 0,

qi = 0,

(Σf )q = 0.
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Triangulated categories

A triangulated category (T ,Σ, E) is a pair (T ,Σ) as above together
with a replete family E of candidate triangles, called exact triangles,
such that

The trivial triangle A → A → 0 → ΣA is exact,

A f→ B i→ C
q→ ΣA is exact ⇔ the translate B −i→ C

−q→ ΣA −Σf→ ΣB
is exact,
Any morphism can be extended to an exact triangle,

A f−→ B i−→ C
q−→ ΣA,
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Triangulated categories

A
f //

α

��

B

β

��

C//
i q

// ΣA

Σα
��

γ∃
��

exact

A′
f ′

// B′
i ′

// C′
q′

// ΣA′ exact

in such a way that the mapping cone of (α, β, γ)

B ⊕ A′

„
−i 0
β f ′

«
// C ⊕ B′

„
−q 0
γ i ′

«
// ΣA⊕ C′

„
−Σf 0
Σα q′

«
// ΣB ⊕ ΣA′

is exact.
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Models for triangulated categories

A triangulated category T has a model if there is an exact equivalence
T ' HoM for some stable model category M.

Example

The category of graded Fp[vn, v−1
n ]-modules, |vn| = 2pn − 2, has at

least 2 non-equivalent models:
Differential graded Fp[vn, v−1

n ]-modules.
K (n)-module spectra.

Theorem (Schwede’05)
The stable homotopy category of spectra Ho Sp admits a unique
model up to Quillen equivalence.
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Models for triangulated categories

More generally we say that T has a model if there is an exact inclusion
T ⊂ HoM.

Neeman defined a K -theory K (T ) for triangulated categories.

Theorem (Neeman’97)
Let A be an abelian category and let T be a triangulated category with
a bounded t-structure with heart A. If T admits a Waldhausen model
then

K (A) ' K (T ).

Example

T = Db(A) ⊂ D(A) = Ho Ch(A).

Neeman’s theorem can be used to obtain K (A) ' K (B) by embedding
adequately two abelian categories A, B in T .
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A triangulated category without models

Theorem A
The category F(Z/4) of finitely generated free Z/4-modules has a
unique triangulated structure with Σ = identity and exact triangle

Z/4 2−→ Z/4 2−→ Z/4 2−→ Z/4. proof

Theorem B
There are not non-trivial exact functors

F(Z/4) −→ HoM,
HoM−→ F(Z/4). proof

Corollary
F(Z/4) does not have models. remarks
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F(Z/4) is triangulated

Two candidate triangle morphisms (α, β, γ) and (α′, β′, γ′) are
homotopic if there are morphisms (Θ,Φ,Ψ)

A
f // B

i // C
q

// ΣA

A′
f ′

// B′
i ′

// C′
q′

// ΣA′

such that

β′ − β = Φi + f ′Θ,

γ′ − γ = Ψq + i ′Φ,

Σ(α′ − α) = Σ(Θf ) + q′Ψ.
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F(Z/4) is triangulated

Homotopic morphisms have isomorphic mapping cones.

A candidate triangle is contractible if the identity morphism is
homotopic to the zero morphism.

The exact triangles in F(Z/4) are the candidate triangles isomorphic
to the direct sum of a contractible triangle and a triangle X2 of the form

X 2−→ X 2−→ X 2−→ X

for some X ∈ F(Z/4).

Fernando Muro Exotic triangulated categories



F(Z/4) is triangulated

Homotopic morphisms have isomorphic mapping cones.

A candidate triangle is contractible if the identity morphism is
homotopic to the zero morphism.

The exact triangles in F(Z/4) are the candidate triangles isomorphic
to the direct sum of a contractible triangle and a triangle X2 of the form

X 2−→ X 2−→ X 2−→ X

for some X ∈ F(Z/4).

Fernando Muro Exotic triangulated categories



F(Z/4) is triangulated

Homotopic morphisms have isomorphic mapping cones.

A candidate triangle is contractible if the identity morphism is
homotopic to the zero morphism.

The exact triangles in F(Z/4) are the candidate triangles isomorphic
to the direct sum of a contractible triangle and a triangle X2 of the form

X 2−→ X 2−→ X 2−→ X

for some X ∈ F(Z/4).

Fernando Muro Exotic triangulated categories



F(Z/4) is triangulated

Let us check that F(Z/4) is triangulated.

A → A → 0 → A is contractible.
The translate of a contractible triangle is contractible. The
translate of X2 is X2.
Any morphism in F(Z/4) is of the form 1 0 0

0 2 0
0 0 0

 : W ⊕ X ⊕ Y −→ W ⊕ X ⊕ Z .

It can be extended to an exact triangle which is the direct sum of
X2 and the contractible triangle

W ⊕ Y

„
1 0
0 0

«
// W ⊕ Z

„
0 0
0 1

«
// Y ⊕ Z

„
0 0
1 0

«
// W ⊕ Y .
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F(Z/4) is triangulated

Let us check that we can extend commutative squares

X
2 //

α

��

X
2 //

β
��

X
2 // X

α

��

Y 2
// Y 2

// Y 2
// Y

for any δ : X → Y . Suppose that

α =

 1 0 0
0 2 0
0 0 0

 : X = L⊕M ⊕ N −→ L⊕M ⊕ P = Y .
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0 2 0
0 0 0

 : X = L⊕M ⊕ N −→ L⊕M ⊕ P = Y .
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F(Z/4) is triangulated

A candidate triangle in F(Z/4)

A f−→ B i−→ C
q−→ A

is quasi-exact if
A f−→ B i−→ C

q−→ A f→ B

is an exact sequence of Z/4-modules.

Example
X2 is quasi-exact. Contractible triangles are quasi-exact.
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F(Z/4) is triangulated

A
f //

α

��

B
i //

β

��

C
q

// A

α

��

contractible

A′
f ′

// B′
i ′

// C′
q′

// A′ quasi-exact

C is free. Let (Θ,Φ,Ψ) be a contracting homotopy for the upper row,

γ = γ′ + (i ′β − γ′i)Φ.

Similarly if the first row is quasi-exact and the second row is
contractible since Z/4 is a Frobenius ring, so the duality functor
HomZ/4(−, Z/4) preserves contractible triangles and quasi-exact
triangles.
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F(Z/4) is triangulated

Let T and T ′ be contractible triangles in F(Z/4). Any commutative
square between the first arrows of X2 ⊕ T and Y2 ⊕ T ′ can be
extended to a morphism(

ϕ11 ϕ12
ϕ21 ϕ22

)
: X2 ⊕ T −→ Y2 ⊕ T ′,

such that the mapping cone of ϕ11 : X2 → Y2 is exact. Morphisms from
or to contractible triangles are null-homotopic, so(

ϕ11 ϕ12
ϕ21 ϕ22

)
'

(
ϕ11 0
0 0

)
,

whose mapping cone is

(mapping cone of ϕ11)︸ ︷︷ ︸
exact

⊕ (translate of T )︸ ︷︷ ︸
contractible

⊕T ′, exact.

back remarks
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F(Z/4) is orthogonal to HoM

We are going to define two kinds of objects in a triangulated category
T according to the cofiber of 2 · 1X : X → X .

Example
If S is the sphere spectrum there is an exact triangle in Ho Sp

S
2·1S−→ S i−→ S/2

q−→ ΣS,

where S/2 is the mod 2 Moore spectrum. The map

2 · 1S/2 : S/2 → S/2

is the composite
S/2

q−→ ΣS
η−→ S i−→ S/2,

where η is the stable Hopf map, which satisfies 2 · η = 0.
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F(Z/4) is orthogonal to HoM

Definition
Let A ∈ T and let

A 2·1A−→ A i−→ C
q−→ ΣA

be an exact triangle. A Hopf map for A is a map η : ΣA → A such that

2 · 1C = iηq,

2 · η = 0.

If A admits a Hopf map we say that A is hopfian.

Exact functors preserve Hopf maps and hopfian objects.
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F(Z/4) is orthogonal to HoM

Proposition
If T admits a model then all objects are hopfian.

Proof.
Sp is “the free stable model category on one generator” S
[Schwede-Shipley’02]. In particular for any object A ∈ HoM there is
an exact functor

FA : Ho Sp −→ HoM

with FA(S) = A, so A is hopfian as S.
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F(Z/4) is orthogonal to HoM

Definition
An object E ∈ T is exotic if there is an exact triangle

E 2·1E−→ E 2·1E−→ E
q−→ ΣE .

Example
Z/4 is exotic in F(Z/4). Indeed all objects in F(Z/4) are exotic.

Exact functors preserve exotic objects.
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F(Z/4) is orthogonal to HoM

Proposition
If X ∈ T is both hopfian and exotic then X = 0.

Proof.
If η : ΣX → X is a Hopf map and

X 2·1X−→ X 2·1X−→ X
q−→ ΣX

is exact then
2 · 1X = (2 · 1X )ηq = 0,

therefore
X 0−→ X 0−→ X

q−→ ΣX

is exact, so X = 0.

Fernando Muro Exotic triangulated categories



F(Z/4) is orthogonal to HoM

Proposition
If X ∈ T is both hopfian and exotic then X = 0.

Proof.
If η : ΣX → X is a Hopf map and

X 2·1X−→ X 2·1X−→ X
q−→ ΣX

is exact then
2 · 1X = (2 · 1X )ηq = 0,

therefore
X 0−→ X 0−→ X

q−→ ΣX

is exact, so X = 0.

Fernando Muro Exotic triangulated categories



F(Z/4) is orthogonal to HoM

Proposition
If X ∈ T is both hopfian and exotic then X = 0.

Proof.
If η : ΣX → X is a Hopf map and

X 2·1X−→ X 2·1X−→ X
q−→ ΣX

is exact then
2 · 1X = (2 · 1X )ηq = 0,

therefore
X 0−→ X 0−→ X

q−→ ΣX

is exact, so X = 0.

Fernando Muro Exotic triangulated categories



F(Z/4) is orthogonal to HoM

Proposition
If X ∈ T is both hopfian and exotic then X = 0.

Proof.
If η : ΣX → X is a Hopf map and

X 2·1X−→ X 2·1X−→ X
q−→ ΣX

is exact then
2 · 1X = (2 · 1X )ηq = 0,

therefore
X 0−→ X 0−→ X

q−→ ΣX

is exact, so X = 0.

Fernando Muro Exotic triangulated categories



F(Z/4) is orthogonal to HoM

Proof of Theorem B.
All objects in HoM are hopfian and all objects in F(Z/4) are exotic.
Therefore

F : F(Z/4) −→ HoM

is an exact functor the image of F consists of objects which are both
hopfian and exotic, so F = 0. Similarly for

F : HoM−→ F(Z/4).

back remarks
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Remarks

Theorems A and B are not only true for R = Z/4 but for any
commutative local ring R with maximal ideal m = (2) 6= 0 such that
m2 = 0. For instance R = W2(k), k a perfect field of char k = 2.

Let k be a field of char k = 2. The category F(k [ε]/ε2) of finitely
generated free modules over the ring of dual numbers k [ε]/ε2 has a
unique triangulated structure with Σ = identity and exact triangle

k [ε]/ε2 ε−→ k [ε]/ε2 ε−→ k [ε]/ε2 ε−→ k [ε]/ε2.

However F(k [ε]/ε2) does have a model. skip model
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Remarks

Proposition

The triangulated category F(k [ε]/ε2) is exact equivalent to Dc(A), so it
has a model given by differential graded right modules over a
differential graded algebra A.

A is a DGA such that
H0(A) = k [ε]/ε2,

any right DG A-module M has H0(M) free as a k [ε]/ε2-module, and
the equivalence is given by

H0 : Dc(A) −→ F(k [ε]/ε2).

skip algebra
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Remarks

A = k〈a, u, v , v−1〉/I with

|a| = |u| = 0, |v | = −1.

The two-sided ideal I is generated by

a2, au + ua + 1, av + va, uv + vu.

The differential is defined by

d(a) = u2v , d(u) = 0, d(v) = 0.

H∗(A) = k [x , x−1]⊗k k [ε]/ε2, with ε = {u} , x = {v} .

We have a non-trivial Massey product

〈ε, ε · x , ε〉 = 1 mod ε.

Given y ∈ H0(M) with y · ε = 0 then

〈y , ε, ε · x〉 · ε = y · 〈ε, ε · x , ε〉 = y ⇒ H0(M) is free.
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〈y , ε, ε · x〉 · ε = y · 〈ε, ε · x , ε〉 = y ⇒ H0(M) is free.
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Remarks

Theorem (Hovey-Lockridge’07)
Let R be a commutative ring. The category F(R) is triangulated with
Σ = identity if and only if R is a finite product of fields, rings of dual
numbers over fields of characteristic 2, and local rings with
m = (2) 6= 0 and m2 = 0.

Corollary
The triangulated category F(R) admits a model if and only if R is a
finite product of fields and rings of dual numbers over fields of
characteristic 2.
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Remarks

There are many different kinds of models for triangulated categories:
Stable model categories.
Stable homotopy categories (Heller).
Triangulated derivators (Grothendieck).
Stable ∞-categories (Lurie).

In all these cases the free model in one generator is associated to the
triangulated category of finite spectra, therefore Theorem B is also true
for these kinds of models.

back
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The End
Thanks for your attention!
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