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Obstruction theory



Braces

We work over a perfect ground field k.

Let (X,dX) be a cochain complex. Its endomorphism operad EX
is EX(n) = Hom(X⊗ n· · · ⊗X, X). It is a brace algebra with

x{y1, . . . , yr} =
∑
±x(. . . , y1, . . . , y2, . . . . . . , yr, . . . ).

It is also a Lie algebra,

[x, y] = x{y} ± y{x}.
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Naive obstructions

An A∞-algebra on X is a sequence of elements mn ∈ EX(n),
n ≥ 2, of degree 2− n such that

d(mn) =
∑

p+q=n+1
mp{mq}.

d(m2) = 0 m2 satisfies the Leibniz rule,
d(m3) +m2{m2} = 0 m2 is associative up to the homotopy m3,

...
...

Given an An−1-algebra on X,∑
p+q=n+1

mp{mq}

is an cocycle, which is a coboundary if and only if it can be
extended to an An-algebra. Obstructions live in the
cohomology of EX.
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Homotopical interpretation

The operad A∞ is free graded F(µ2, µ3, . . . ) with differential

d(µn) =
∑

p+q=n+1
µp{µq}.

Here we use that any operad is a brace algebra (and hence a
Lie algebra).

The suboperads An ⊂ A∞ are free graded F(µ2, . . . , µn) and
each An−1 ⊂ An is a principal cofibration whose attaching map
is defined by the previous summation,

F(Σ−1µn) An−1 An
attach
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Homotopical interpretation

Take an An−1-algebra on X and consider the diagram

F(Σ−1µn) An−1 An

EX

attach

≃ 0

The map ↓ classifies the An−1-algebra on X.

A null-homotopy for the map↘ amounts to a choice of mn,
which allows for the dashed extension↙.
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The minimal case dX = 0

When dX = 0 naive obstructions live in EX, but m2 is associative
since m2{m2} = 0, so A = (X,m2) is a graded algebra. Its
Hochschild complex is EX with differential [m2,−]. Hochschild
cohomology is (arity, degree) bigraded HH⋆,∗(A,A).

No mn appears really in the nth A∞ equation, n ≥ 4,

d(mn) = 0 =
∑

p+q=n+1
mp{mq} = [m2,mn−1] +

∑
p+q=n+1
p,q≤n−2

mp{mq}.

Hence mn can be freely modified in a minimal An-algebra.

Given an An−1-algebra, n ≥ 4, the last summation is a
Hochschild cocycle, and it is a Hochschild coboundary if and
only if it can be extended to an An-algebra after possibly
replacing mn−1.
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Classical obstructions

These obstructions live in HHn,3−n(A,A), n ≥ 4. They go back to
Kadeishvili’80 and Prouté’85.

For n = 4 the obstruction always vanishes.

For n = 5 it is
[{m3}, {m3}]

2 ∈ HH5,−2(A,A),

at least in char k ̸= 2, where the universal Massey product

{m3} ∈ HH3,−1(A,A)

is well defined because [m2,m3] = 0 (Baues–Dreckmann’89,
Benson–Krause–Schwede’04…).

What is the homotopical interpretation of this obstruction
theory?

6



Classical obstructions

These obstructions live in HHn,3−n(A,A), n ≥ 4. They go back to
Kadeishvili’80 and Prouté’85.

For n = 4 the obstruction always vanishes.

For n = 5 it is
[{m3}, {m3}]

2 ∈ HH5,−2(A,A),

at least in char k ̸= 2, where the universal Massey product

{m3} ∈ HH3,−1(A,A)

is well defined because [m2,m3] = 0 (Baues–Dreckmann’89,
Benson–Krause–Schwede’04…).

What is the homotopical interpretation of this obstruction
theory?

6



Modules over operads

A module1 over an operad O is a sequence M = {M(n)}n≥0
equipped with composition products

M(p)⊗O(q) ◦i−→ M(p+ q− 1) ◦i←− O(p)⊗M(q), 1 ≤ i ≤ p,

satisfying the usual associativity equations. Any operad map
O → P turns P into an O-module.

The category of O-modules inherits an enriched abelian
model category structure from cochain complexes. There is a
Quillen pair

O -Mod O ↓ Operads
LO

forget

1Defined by Markl’96, called linear modules by Baues–Jibladze–Tonks’97 and
infinitesimal bimodules by Merkulov–Vallette’09.
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Homotopical interpretation

Recall that, in An, d(µn) = [µ2, µn−1] +
∑

p+q=n+1
p,q≤n−2

µp{µq}.

Let Bn−2,2 be the free graded A2-module FA2(µn−1, µn) with

d(µn) = [µ2, µn−1].

For n ≥ 4, there is a cofiber sequence in A2 ↓ Operads

LA2Σ
−1Bn−2,2 An−2 An

attach

where the attaching map is given by

Σ−1µn−1 7→
∑

p+q=n
µp{µq},

Σ−1µn 7→
∑

p+q=n+1
p,q≤n−2

µp{µq}.
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Homotopical interpretation

Given an An−1-algebra on X, consider the diagram

LA2Σ
−1Bn−2,2 An−2 An

EX

attach

≃ 0

The map ↓ classifies the underlying An−2-algebra.

A null-homotopy for the map↘ amounts to a modification of
mn−1 with a compatible choice of mn, which allows for the
dashed extension↙.
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New obstructions

For n ≥ 2s, there are similar cofiber sequences in As ↓ Operads

LAsΣ
−1Bn−s,s An−s An

attach

based on the fact that, in An,

d(µn) =
∑

p+q=n+1
p≤s

[µp, µq] +
∑

p+q=n+1
p,q≤n−s

µp{µq}.

They can be used to define obstructions to extending an
An−1-algebra to an An-algebra after possibly replacing
mn−s+1, . . . ,mn−1.

Where do these obstructions live?
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A spectral sequence

The tower of operads

· · ·↣ An−1 ↣ An ↣ · · ·

gives rise to a tower of fibrations

· · ·↞ Map(An−1, EX) ↞ Map(An, EX) ↞ · · ·

whose Bousfield–Kan spectral sequence is given by the
Hochschild complex in page 1,

Ep,q1 = EX(p+ 2)−q, d1 = [m2,−],

and by Hochschild cohomology in page 2,

Ep,q2 = HHp+2,−q(A,A), p > 0.

The term Ep,qs contributes to πq−pMap(A∞, EX).
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Obstructions recipients

The classical obstructions live in HHn,3−n(A,A) = En−2,n−32 ,
n ≥ 4, and the new ones live in En−2,n−3s , n ≥ 2s.2

These terms would contribute to π−1Map(A∞, EX)!!!

Caveat! The spectral sequence is only defined for 0 ≤ p ≤ q,

p

q

se
tsgro

up
s

ab
eli
an
gro
up
s

2Angeltveit’08 made a similar approach to this problem with a different
spectral sequence. 12
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Obstructions recipients

We have extended it in each page Es, following Bousfield’89,

p

q

s−2

2s−3

Sets

Abelian groups

Vector spaces

ob
str
uc
tio
ns
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Obstructions recipients

Caveat! The spectral sequence would require a base point in
Map(A∞, EX), i.e. an A∞-algebra on X. If we only have an
An-algebra, we can still define it up to page ⌊n+12 ⌋.

Theorem
The second differential of the spectral sequence is
d2 = [{m3},−].

Here we use the Gerstenhaber bracket in Hochschild
cohomology. In char k = 2 there is an exceptional d2 which
must be dealt with separately.
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Triangulated categories



Definition

A triangulated category is an additive category T equipped
with a self-equivalence

Σ: T
∼−→ T ,

called suspension, and with diagrams

X f−→ Y i−→ Cf
q−→ ΣX,

called exact triangles, satisfying the usual properties of cofiber
sequences in the stable homotopy category or in a derived
category.
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Enhancements

Any DG-category A gives rise to a triangulated category Dc(A ),
the derived category of compact A -modules.

A Morita equivalence, in the sense of Tabuada, is a DG-functor
A → B which induces an equivalence Dc(A ) ≃ Dc(B).

We consider the set
ETC(T ,Σ)

of Morita equivalence classes of DG-categories such that
Dc(A ) ≃ T as suspended categories3.

3ETC stands for enhanced triangulated categories.
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Finiteness

An additive category T is finite if:

• idempotents split in T ,
• dimT (X, Y) <∞ for any pair of objects,
• there are finitely many indecomposables X1, . . . , Xn up to
isomorphism.

Lemma
There is an equivalence T ≃ proj(Λ) where
Λ = EndT (X1 ⊕ · · · ⊕ Xn) and any self-equivalence is the
restriction of scalars along an algebra automorphism
σ : Λ ∼= Λ.
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Frobenius algebras

If T admits a triangulated structure then Λ is a Frobenius
algebra by Freyd’66, in particular projective and injective
Λ-modules coincide.

Two Λ-module maps f,g : M→ N are homotopic if f− g factors
through an injective-projective object.

The homotopy category of Λ-modules is called the stable
category. It is triangulated with Σ = Ω−1. The syzygy Ω(M) of a
Λ-module M is the kernel of a projective cover

Ω(M) ↪→ P↠ M.
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Main theorem

Let Λ be a Frobenius algebra, T = proj(Λ), and Σ the
restriction of scalars along σ : Λ ∼= Λ.

The enveloping algebra Λop ⊗ Λ is also Frobenius.
Theorem
T is an enhanced triangulated category if and only if
Ω3Λop⊗Λ(Λ) is stably isomorphic to 1Λσ . In that case, any two
enhancements are Morita equivalent.

There were finite triangulated categories with no known
enhancements, and others whose enhancements where not
known to be unique (Amiot’07, Keller’18, Hanihara’18).

Let us see how this follows from the new A∞-obstruction
theory.
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Hochschild–Tate cohomology

Since Λop ⊗ Λ is also Frobenius, Λ admits a complete
injective-projective resolution P∗ as a Λ-bimodule

· · · P2 P1 P0 P−1 P−2 · · ·

Λ

The cohomology of P∗ with coefficients in a Λ-bimodule M is
the Hochschild–Tate cohomology (Eu–Schedler’09)

ĤH
n
(Λ,M)

which coincides with Hochschild cohomology for n > 0.
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Edge units

We consider the graded algebra

Λ(σ) =
Λ⟨t±1⟩

(tλ− σ(λ)t) , |t| = −1,

whose degree 0 part is Λ.

An element in
HH⋆,∗(Λ(σ),Λ(σ))

is an edge unit if it maps to a unit in

ĤH
⋆,∗

(Λ,Λ(σ)).

The latter may have units in arbitrary bidegree, while the
former only in ⋆ = 0.
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Enhanced triangulated structures

An enhanced triangulated structure on (T ,Σ) is an
A∞-algebra (Λ(σ),m2,m3, . . . ) such that:

• m2 is the product of Λ(σ),
• {m3} ∈ HH3,−1(Λ(σ),Λ(σ)) is an edge unit.

A gauge equivalence is an A∞-quasi-isomorphism with identity
linear part.

We denote by ETS(T ,Σ) the set of gauge equivalence classes
of enhanced triangulated structures, which carries a right
action of Aut(Λ(σ)) given by

mg
n = g−1mn(g, . . . ,g).
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Relating enhancements

We have considered two kinds of enhanced triangulations on
T , given by DG-categories A with Dc(A ) ≃ T and
A∞-algebras on Λ(σ), respectively.

Theorem
There is a bijection

ETS(T ,Σ)/Aut(Λ(σ)) ∼= ETC(T ,Σ)

sending each (Λ(σ),m2,m3, . . . ) to any A∞-isomorphic
DG-algebra.
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Applying the new obstruction theory

Theorem
There is a bijection between ETS(T ,Σ) and the set of edge
units u ∈ HH3,−1(Λ(σ),Λ(σ)) satisfying

[u,u]
2 = 0.

It maps (Λ(σ),m2,m3, . . . ) to {m3}.

Idea of the proof.
Let m3 be a representative of u. By the equation, there is an
A5-algebra (Λσ,m2,m3,m4,m5). We have to show that it
extends to an A∞-algebra in an essentially unique way, after
possibly modifying m4 and m5.
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Applying the new obstruction theory

Cont.
We are going to see that Ep,q3 vanishes for p ≥ 2, hence all
obstructions living therein vanish.

On the one hand, multiplication by u in HHp,q(Λ(σ),Λ(σ)) is
an isomorphism for p ≥ 2 since it is an edge unit.

On the other hand, the Euler class δ ∈ HH1,0(Λ(σ),Λ(σ))

satisfies
u · x = [u, δ · x] + δ · [u, x]

for any x. Hence multiplication by u in Hochschild
cohomology is null-homotopic for the differential [u,−]. This
suffices by the computation of d2.
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Final steps

Proposition
The natural map

HH3,−1(Λ(σ),Λ(σ)) −→ ĤH
3,−1

(Λ,Λ(σ))

induces a bijection from set of edge units u in the source
satisfying [u,u]

2 = 0 to the set of units in the target.

Proposition

The set ĤH
3,−1

(Λ,Λ(σ))×/Aut(Λ(σ)) is a singleton.
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