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Classical moduli schemes of algebras

k commutative ground ring.

F ⊃ {e1 , . . . , en} a free k-module and a basis.

An associative algebra structure on F is determined by the

ei · ej �
n∑
k�1

ckĳek structure constants.

(ei · ej) · ek � ei · (ej · ek) ⇔

n∑
m�1

cmĳ c
l
mk �

n∑
m�1

climcmjk , 1 ≤ l ≤ n.

XF � SpecRmoduli scheme of associative algebra structures
on F

R �

k[ckĳ]

*
,

n∑
m�1

cmĳ c
l
mk − climcmjk+

-

, X ⊂ An3 .
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Classical moduli schemes of algebras

A unital associative algebra structure consists, in addition, of

1 �

n∑
i�1

aiei coordinates of the unit.

1 · ei � ei � ei · 1 ⇔

n∑
j�1

ajckji � δik �
n∑
j�1

ckĳaj , 1 ≤ k ≤ n.

YF � SpecSmoduli scheme of unital associative algebra
structures on F

S �
R[ai]

*.
,

n∑
j�1

ajckji − δik ,
n∑
j�1

ckĳaj − δik
+/
-

, Y ⊂ An3+n.
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Classical moduli schemes of algebras

There is a canonical map YF → XF given by forgetting the unit.
It is induced by the inclusion R ⊂ S.

Proposition (Gabriel’74)

The map YF → XF is a Zariski open immersion.

The morphism R→ S is:

# finitely presented,
# flat,
# an epimorphism SqR S � S ⊗R S � S.
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Example n � 1

c111

a1

YF : a1c111 � 1
A2

c111
XF � A1vertical projection
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Functors of points

Affop
k

category of commutative k-algebras.

XF : Affop
k
−→ Sets,

A 7→ asociative A-algebra structures on F ⊗ A.
YF : Affop

k
−→ Sets,

A 7→ unital. . .

We are rather interested in them up to isomorphism.
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Classical moduli stacks of algebras

We quotient out the action of GLF in order to define the moduli
stacks of (unital) associative algebras on rank n vector bundles.

XF/GLF : Affop
k
−→ Groupoids,

A 7→ asociativeA-algebraswithunderlyingprojec-
tive A-module of rank n and isomorphisms.

YF/GLF : Affop
k
−→ Groupoids,

A 7→ unital. . .

Corollary

The induced map YF/GLF → XF/GLF is an affine Zariski open
immersion.
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Example n � 1

c111

a1

YF : a1c111 � 1
A2

c111
XF � A1vertical projection

YF/GLF BGLF XF/GLF
inclusion of thin point

projection

projection
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Classical moduli stacks of algebras

Consider the classifying stack of automorphisms of F,

BGLF : Affop
k
−→ Groupoids,

A 7→ projective A-modules of rank n
and isomorphisms.

We have a cartesian diagram,

XP SpecA

XF/GLF BGLF

inclusion of dis-
crete subcategory

structure map

forgets the alge-
bra structure

classified by a rank n
projective A-module P

pullback

Similarly with Y, so the fibers of YF/GLF → XF/GLF coincide
with the fibers of the maps YP → XP.
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Complicial algebraic geometry [Toën–Vezzosi’08]

k a commutative Q-algebra.

Affop
k

category of differential graded commutative k-algebras.

A presheaf F : Affop
k
→ Spaces is a stack if:

# F takes quasi-isomorphisms to weak equivalences.
# F preserves products.
# Descent condition w.r.t. the strongly étale topology.

Affine stacks SpecA � MapAffop
k

(A,−) are stacks.
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Spaces vs categories

Sometimes our stacks take values in categories and we compose
with the geometric realization functor

| · | : Categories −→ Spaces,

which is essentially defined by taking chains of composable
maps to simplices.

•

object
• •

map
•

•

• •

•

•

•

. . .

f

gf

g
f

gf

h

hg

hgf

g
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Complicial moduli stacks of DG-algebras

We consider the moduli stacks of (unital) associative
DG-algebras on a perfect complex P [Toën–Vezzosi’08].

XP/GLP : Affop
k
−→ Spaces,

A 7→
������

asociative A-algebras with underlying A-
module locally quasi-isomorphic to P ⊗A
and quasi-isomorphisms.

������
YP/GLP : Affop

k
−→ Spaces,

A 7→ |unital. . . |

12



Complicial moduli stacks of DG-algebras

Theorem (M’14)

The map YP/GLP → XP/GLP given by forgetting the unit is an
affine Zariski open inmersion.

This means that:

# it has affine fibers,
# it is categorically finitely presented, since any base change

along a map from SpecA is represented by a htpy. retract
of a map A→ B with B freely finitely generated over A,

# it is a homotopy monomorphism, i.e.
YP/GLP ' YP/GLP

∏
XP/GLP YP/GLP.

Flatness is essentially automatic.
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A∞-algebras

Definition (Stasheff’63)

An A∞-algebra is a complex C equipped with degree n − 2 maps,

µn : C⊗
n
· · · ⊗C −→ C, n ≥ 2,

satisfying

[d, µn] �
∑

p+q�n+1
1≤i≤p

±µp ◦i µq.

15



A∞-algebras

The first equations look as follows,

dµ2(x, y) � µ2(d(x), y) + (−1) |x|µ2(x, d(y))
Leibniz rule,

[d, µ3](x, y, z) � µ2(µ2(x, y), z) − µ2(x, µ2(y, z))
homotopy associativity,
. . .

In particular H∗(C) is an associative algebra.

16



A∞-algebra structures

An A∞-algebra structure on Σmk with degree m generator e is
given by

µn(e, . . . , e) � cne structure constants |cn | � n − 2 +mn −m

satisfying
d(cn) �

∑
p+q�n+1
1≤i≤p

±cpcq.

XΣmk � SpecR moduli stack of A∞-algebra structures on Σmk

R � (k[cn], d).

It is not homotopically finitely presented over k � Q for m ≤ −2.

Replacing Σmk with a perfect complex Pwe still obtain an affine
stack XP.
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A∞-algebra structures

Theorem (Rezk’96, Toën–Vezzosi’08, M’14)

We have a cartesian diagram,

XQ SpecA

XP/GLP BGLP

inclusion of dis-
crete subcategory

structure map

forgets the alge-
bra structure

classified by a perfect
A-module Q

pullback
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Operads

Definition (Stasheff’63, May’72, Boardman–Vogt’73)

An operad P � {P(n)}n≥0 consists of:

# complexes P(n) of arity n operations,
# compositions ◦i : P(s) ⊗ P(t) → P(s + t − 1), 1 ≤ i ≤ s,
# an identity id ∈ P(1),
+ associativity and unitality laws.

19
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Operads and their algebras

Example

The endomorphism operad of a complex C is given by

Endk(C) � {Homk(C⊗
n
· · · ⊗C,C)}n≥0 ,

◦i is composition at the ith slot and id ∈ Homk(C,C) is the identity.

Definition

A P-algebra is a complex C equipped with a map P → Endk(C), or
equivalently a sequence of maps

P(n) ⊗ C⊗ n
· · · ⊗C −→ C

satisfying some laws.
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The operad of associative DG-algebras

Example (The associative operad)

The operad As is generated by

,

with relation

� .

21



The operad of A∞-algebras

Example (The A∞-operad)

The operad A∞ is freely generated by

µn �

n. . .

, degree � n − 2, n ≥ 2,

with differential

d
*....
,

n. . . +////
-

�

∑
p+q�n+1
1≤i≤p

±

i−1. . .

q. . .

p−i. . .
.

22



A∞-algebras and associahedra

Stasheff showed that A∞(n) is the complex of cellular chains on
the nth associahedron Kn, n ≥ 2,

The element µn ∈ A∞(n)n−2 is the top dimensional cell of the
polytope Kn.

23



Associahedra

K4 �

24



Associahedron K5

25



Operads and the moduli stack of A∞-algebra structures

Theorem (Hinich’97, Berger–Moerdijk’03, Lyubashenko’11, M’11. . . )

The category Opk of operads carries a model structure with quasi-
isomorphisms as weak equivalences and surjections as fibrations.

We have a cofibrant resolution A∞ → As defined by

7→ ,

n. . .

7→ 0, n > 2.

The stack XP deserves its name since its functor of points is

XP : Affop
k
−→ Spaces,

A 7→ MapOpk
(A∞ , EndA(P ⊗ A)).

26
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The operad of unital associative algebras

Example (The unital associative operad)

The operad uAs is genetated by

, ,

with relations

� , � � .

27



The unital A∞ operad

Definition (Fukaya–Oh–Ohta–Ono’09, Lyubashenko’11, M.–Tonks’14)

The operad uA∞ is the free extension of A∞ generated by

, degree � leaves + 2 · corks − 2,

with differential pictorially defined as in A∞, taking into accounts
corks, with the following exceptions

d *
,

+
-
� 0, d

*...
,

+///
-

� − .
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Unital A∞-algebras and unital associahedra

[M–Tonks’14] showed that uA∞(n) is the complex of cellular
chains on the nth unital associahedron Ku

n, n ≥ 0, a contractible
cell complex equipped with a cork filtration by finite
subcomplexes Ku

n,m, m ≥ 0,

· · ·

Each new generator of uA∞ corresponds to a cell of the form

Kleaves+corks × [0, 1]corks ,

a product of an associahedron and a hypercube.
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The piece of unital associahedron Ku
2,1

16 FERNANDO MURO AND ANDREW TONKS

After the classical associahedron Ku
n,0 = Kn, the next stage in the cork filtration

also has a straightforward description:

Corollary 4.6. For n ≥ 1 the space Ku
n,1 is the mapping cylinder of

(◦i)i :
n+1∐

i=1

Kn+1 −→ Kn,

where ◦i : Kn+1 → Kn are the associahedral degeneracy maps (3.3).

Ku
0,1 = • , Ku

1,1 = ,

Ku
2,1 = , Ku

3,1 = .

Figure 13. The first four Ku
n,1.

We now show that operadic composition maps respect the new cell structure.
Consider the sets C(n) ⊂ T(n) of trees of height 2 with n leaves. Then C has an

operad structure given by grafting trees and then contracting the new inner edge.
There is another set operad P, isomorphic to C, where

P(n) = {(S, n + m) : m ≥ 0, S ⊆ [n + m], |S| = m}.

A pair (S, n + m) corresponds to the tree obtained from the corolla Cn+m by
replacing m leaf vertices by corks, at the positions indicated by the subset S. Thus
the operad structure of P has unit (∅, 1) and if S1 = {j1 < · · · < js} ⊂ [p + s],
S2 = {k1 < · · · < kt} ⊂ [q + t], and 1 ≤ i ≤ p then

(S1, p + s) ◦i (S2, q + t) = (S1 ◦i S2, p + s + q + t − 1).

Here the set S1 ◦i S2 is

{j1, . . . , jr−1, k1 + i + r − 2, . . . , kt + i + r − 2, jr + q + t − 1, . . . , js + q + t − 1}
if the ith element of the complement of S1 lies between jr−1 and jr. We understand
that r = 1 if i < j1 or S1 = ∅, and r = s + 1 if the ith element of the complement
of S1 is bigger than js.
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Complicial moduli stacks of unital A∞-algebras

Theorem (Rezk’96, Toën–Vezzosi’08, M’14)

YQ SpecA

YP/GLP BGLP

inclusion of dis-
crete subcategory

structure map

forgets the alge-
bra structure

classified by a perfect
A-module Q

pullback

We use the affine moduli stack of unital A∞-algebra structures

YP : Affop
k
−→ Spaces,

A 7→ MapOpk
(uA∞ , EndA(P ⊗ A)).

For P � Σmk, YΣmk � Spec(R[cn,S], d), n ≥ 1, ∅ , S ⊂ {1, . . . , n}.
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Fibers of the forgetful map

The fibers of the map forgetting the unit

YP/GLP −→ XP/GLP

are the fibers of the maps between affine stacks

YQ −→ XQ

induced by the inclusion A∞ ⊂ uA∞, so the former is affine.

33



The forgetful map is a homotopy monomorphism

Theorem (M’15)

The inclusion A∞ ⊂ uA∞ is a homotopy epimorphism,

uA∞ qA∞ uA∞ ' uA∞.

Corollary

The map YP/GLP → XP/GLP is a homotopy monomorphism.

This corollary also follows from [Lurie’14].
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Finite presentation

We have YP � SpecS→ XP � SpecR induced by R ⊂ S but S is
not finitely generated over R.

Let A∞ ⊂ P ⊂ uA∞ be generated by

, , .

Theorem (Lyubashenko–Manzyuk’08, Lurie’14, Iwase)

Any P-algebra extends to a unital A∞-algebra.

Corollary

S is a homotopy retract of a subalgebra finitely generated over R, so
YP/GLP → XP/GLP is categorically finitely presented.
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Scope of these results

These results extend to many other homotopical algebraic
geometry contexts in the sense of [Toën–Vezzosi’08]:

# Simplicial k-modules, derived algebraic geometry.
# Symmetric spectra, brave new algebraic geometry.
# Any context where the ground monoidal model category is

simplicial, complicial, or spectral, satisfies the strong unit
axiom and Schwede–Shipley’s monoid axiom, is locally
finitely presentable, and the tensor unit and the sources
and targets of generating cofibrations are homotopically
finitely presented.
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