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Contractible curves

Taken from Molina and Tosun 2020.



Contractible curves

Let k = C be the ground field and consider:
1. Ysmooth quasi-projective 3-fold.
2. i: C — Ywith C™ = P! arational curve.
3. f: Y — X birational morphism satisfying:
a) frestrictstoY\C =X \pforp € X.
b) f7l(p) =C.
Idea: study the singular point p € X by means of the resolution f.

The contraction f is a minimal model for X.
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Let us place ourselves in the following setting:
e Aa k-algebra.
e M aright A-module.
e A afinite-dimensional local k-algebra.
e m c A the maximal ideal, so k = A/m.

A A-deformation of M is a left flat A-A-bimodule N equipped with
an isomorphism

oy k®y N — M.

An isomorphism of A-deformations is a A-A-bimodule

isomorphism y: N = N'such that the following triangle
commutes

k
k@AN% k@AN,

‘Pk[ \AN’
M



The contraction algebra

Let A = Mod(A) be the category of right A-modules, M € A. The
(non-commutative) deformation functor is defined as follows:

Defyr: Art — Set,
A — Defyi(A) = {A-deformations of M}/ =.



The contraction algebra

Let A = Mod(A) be the category of right A-modules, M € A. The
(non-commutative) deformation functor is defined as follows:

Defﬁ: Art — Set,
A — Defii(A) = {A-deformations of M}/ =.
Take A = Qcoh(Y) and M = i,Opi (—1) withi: C — Y.

Theorem (Donovan and Wemyss 2016)

The functor Defﬁ, = Hom ¢ (Acon, —) is representable.
——

Contraction algebra

This extends to C™ = U”_, C; with C; = P".



The contraction algebra

Let A = Mod(A) be the category of right A-modules, M € A. The
(non-commutative) deformation functor is defined as follows:

Defyr: Art — Set,
A — Defyi(A) = {A-deformations of M}/ =.

Take A = Qcoh(Y) and M = i,Opi (—1) withi: C — Y.

Theorem (Donovan and Wemyss 2016)

The functor Defﬁ, = Hom ¢ (Acon, —) is representable.
——

Contraction algebra

This extends to C™ = U”_, C; with C; = P".

Conjecture (Donovan and Wemyss 2016)
Ox,p = Oxrpp <= DP(Acon) = D’ (Aor)

con’/*

August 2020 proved =.



The derived contraction algebra

The derived contraction algebra I" pro-represents the corresponding
derived deformation functor of Efimov, Lunts, and Orlov 2010:

e ['is concentrated in < 0.
o H'(I') = A, = A
e ['issmooth, I' € D°(T®).
e T is 3-Calabi-Yau, Homp. (T', T¢) = T'[-3].
Let D(I') ¢ D°(I') be spanned by X with dim H* (X) < co.

The Amiot 2009 cluster DG category, which is the Drinfeld 2004
pre-triangulated quotient (Bondal and Kapranov 1991),
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The derived contraction algebra I" pro-represents the corresponding
derived deformation functor of Efimov, Lunts, and Orlov 2010:

e ['is concentrated in < 0.
o H'(I') = A, = A
e ['issmooth, I' € D°(T®).
e T is 3-Calabi-Yau, Homp. (T', T¢) = T'[-3].
Let D(I') ¢ D°(I') be spanned by X with dim H* (X) < co.

The Amiot 2009 cluster DG category, which is the Drinfeld 2004
pre-triangulated quotient (Bondal and Kapranov 1991),

% = D)/ D).

Theorem (Hua and Keller 2021)

OX,p = Oxl’p! =——1 erg = er,g.



d
Can we recover Grg from A ?
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The cluster category

The Amiot 2007 cluster category
T = € = H(C%) = D°(€Y)

has the following properties:
1. Small, idempotent-complete, and Hom-finite.
2. 2—Calabi-Yau
Hom(T(x, y), k) = T(y, x[2]).

3. 2-periodic, i.e. [2]: T — T is the identity functor.

4. T = thick(c) where ¢ = I'. Moreover, any object in 7 is the
mapping cone of a map between retracts of finite directs sums
of copies of c.

5. ¢ does not have self-extensions, T(c, c[1]) = 0.
6. A = J(c, ¢) is asymmetric algebra by 2 and 3.

Properties 3+4+5 = ¢ € T is a 2Z-clsuter tilting object.
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A (small) triangulated category T is algebraic in the sense of Keller
2007 if T = D°(A) for some DG category A. We then say that A is an
enhancement or model of 7.

Theorem (Jasso-M.’22)

1. The cluster category Cr admits a unique enhancement up to
Morita equivalence.

2. Any small, Hom-finite, idempotent-complete, algebraic
triangulated category J with a 2Z-cluster tilting object c € T
with endomorphism algebra T(c, ¢) = A and T(c, c[2]) = A as
A-bimodules is

T = Cr.

Corollary
The Donovan and Wemyss 2016 conjecture holds.
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Let us place ourselves in the following situation':
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T is a small, algebraic, idempotent-complete, Hom-finite
triangulated category.

¢ € T is a 2Z-cluster tilting object.

A = T(c, c) is symmetric, hence self-injective.
T(c, c[2]) = A as A-bimodules.

A is a pre-triangulated enhancement of 7.

A = A(c, ¢) the endomorphism DG algebra of c.

Then A is Morita equivalent to A,

H*(A) = T*(c,c) = @ T(c, cln]) = P A = Alr*'], lt] = -2,

nez 2|n

and A can be recovered from a minimal A__-model built on A[£*!].

'The previous theorem holds in this generality.
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The universal Massey product

Universal Massey products go back to Kadeishvili 1982; Baues and
Dreckmann 1989; Benson, Krause, and Schwede 2004; Kaledin
2007...

Theorem (Jasso-M.’22)

Given x,y, z, t € H*(A) = A[r*'] whose Massey product exists,
—my(x,y,2,t) €{X,Y,2,1).
This Massey product coincides with the Toda bracket in T of
t z y X
c—c=>c>c>c.

The first property was believed to hold for any DG algebra, any
minimal A, -model, Massey products of any length n, and m,,, but
Buijs, Moreno-Ferndndez, and Murillo 2020 found
counterexamples.
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The inclusion j: A — A[t*!'] of the degree 0 part induces

J*r HHY2AL=], AL — HHY2(A, A1),
{my} — ]*{m4}
———
Restricted universal Massey product

Since A is ungraded and A[t*!] is concentrated in even degrees,

HHP9 (A, A[£2']) = HHP (A, A[r£119)

) HHP(AA) = Extﬁe (A, A), qeven,
10 q odd.
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The restricted universal Massey product

Since A is self-injective, it has complete projective-injective
resolutions as a A-bimodule and we can define Tate Exts and
Hochschild-Tate cohomology

HH®"* (A, Al£*']) = Extyd (A, Ale2'), o, %€ Z.
There is a natural comparison map
HH®* (A, Alt*']) — HH"* (A, Al£%1)
which is bijective for ¢ > 0 and surjective for e = 0.

Theorem (Jasso-M.’22)

The restricted universal Massey product j *{m,} € HH*“2(A, A[t*'])
is a unitin HH** (A, A[£%1]).

This follows from the connections between Toda brackets in 7T,
Massey products in H * (A), and the universal Massey product.
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Intrinsic formality

A DG algebra Bis formal if B = H*(B).

A graded algebra Cis intrinsically formal if, given a DG algebra B,
H*B)=C = B =C.
Equivalently, given DG algebras B, B,
H*(B;) 2 C = B, = B,.

Theorem (Kadeishvili 1988)

HH"*2~"(C) = 0 for n > 0 = Cis intrinsically formal.

If H*(B) = Cis concentrated in even degrees and
{mJ} # 0 € HH*"2(C) then Cis not intrinsically formal. In
particular A[z*'] is not intrinsically formal if A is not separable.



A separable example

If A = k the algebraic triangulated category
T = D°(k[r*']) =~ mod(k) x mod (k)
has a basic 2Z-cluster tilting object
¢ = k[t*'] — (k,0)
with (intrinsically formal graded) endomorphism algebra
T(c,c)=A=k, T*(c,c) = Alt*'] = k[r*'],
by Kadeishvili 1988, since
HH®"* (k[t£']) = k[t 8]

with
& € HHY (k[*1)

the fractional Euler class, defined by 6, = 0and 6(¢) = —t.
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Massey formality

An even Massey algebra (C, m) is a graded algebra C concentrated
in even degrees and

[m,m]
=

m € HH*72(0), 0.

We say that (C, m) is Massey formal if, given DG algebras B;, B,,

H*(B)=C

. — B; = B,.
{mfl}’—’m} 1 2

The Hochschild cohomology of an even Massey algebra

HH®**(C, m) is the cohomology of the complex
(HH**(C), [m, -]).

Theorem (Jasso-M.’22)

HH"2~"(C, m) = 0 for n > 2 = (C, m) is Massey formal.
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Up to isomorphism, there exists a unique even Massey algebra
(A[t*'], m) such that j* (m) is a Hochschild-Tate unit. Moreover, it
is Massey formal. In particular 7 has a unique enhancement.

Proof
1. j*m € HH*"2(A, A[£*']) is a unit in HH** (A, A[£*]).

2. HH**(A, A[t*']) — HH"* (A, A[t*!]) is an isomorphism for
e > 0 and surjective for e = 0.

3. The product with j*m in HH** (A, A[t*']) is an isomorphism
for ¢ > 0 and surjective for e = 0.

4. We have

HH®* (A[££]) = HH®" (A, A[tE))[5].
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Uniqueness

5. The product with 7 in HH** (A[¢*']) is an isomorphism for
e > 1 and surjective for e = 1.

6. The product with m in HH** (A[£*']) is nullhomotopic:
m-x=[m,0-x]+06-[m,x].
To see it like a null-homotopy:

f(x) =0h(x) + ho(x),

f&x)=m-x,
o0(x) = [m, x],
hix) =6 - x.

7. HH** (A[t*']) = O for e > 2.



Triangulated Auslander-lyama correspondence

Theorem (Jasso-M.’22)
Let k be a perfect field. There is a bijection between equivalence
classes of pairs:
1. (7, ¢) where:
a) 7 isasmall, idempotent-complete, Hom-finite, algebraic
triangulated category.
b) cisa2Z-cluster tilting object such that T (c, c[2]) = T(c, ¢) as
T (c, ¢)-bimodules
2. Aisa self-injective finite-dimensional algebra such that
HH?®(A) has a unit in degree 4.
The bijection is given by A = T(c, ¢).

These triangulated categories admit a unique DG enhancement.



A degree 4 unit in HH® (A) is an element of
u € HH*(A) = Extje (A, A) = HH* (A, A[£51)).
We can construct a DG algebra B such that
H*(B) = Alt*'], jHimy} — u e HHY (A, A[21)).

Then T = D(B) has 2Z-cluster tilting object ¢ = B with the
required properties.
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Theorem (Jasso-M.’22)
There exists a unique m € HH*2(A[¢*!], A[t*']) such that

[m,m]
5 =

j*(m) = u, 0.

Theorem (Jasso-M.’22)

Given an even Massey algebra (C, m), if HH"*~"(C, m) = 0 for
n > 7 then there exists a DG algebra B with

H*(B) = C, {my} — m.



Thanks for your attention! ©
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Contractible curves

Taken from Molina and Tosun 2020.



Triangulated Auslander-lyama correspondence

Theorem (Jasso-M.’22)

Let k be a perfect field and ¢ = 1. There is a bijection between
equivalence classes of pairs:
1. (7, c¢) where:
a) T asmall algebraic triangulated category with
finite-dimensional Hom’s and split idempotents.
b) ¢ abasic dZ-cluster tilting object.
2. (A, [o]) where:
a) A abasic finite-dimensional self-injective twisted
(d + 2)-periodic algebra.
b) [o] € Out(A) such that Q{**(A) = ; A, in mod(A®).

The bijection is given by A = T(c, ¢) and ; A, = T(c[d], ¢).?

These triangulated categories admit a unique DG enhancement.

4As objects, c[d] = ¢ but [d] does not act like the identity on A = T(c, ¢).
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