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Contractible curves

Taken from Molina and Tosun 2020.



Contractible curves

Let 𝑘 = ℂ be the ground field and consider:
1. 𝑌 smooth quasi-projective 3-fold.
2. 𝑖 ∶ 𝐶 ↪ 𝑌with 𝐶 red ≅ ℙ1 a rational curve.
3. 𝑓∶ 𝑌 → 𝑋 birational morphism satisfying:

a) 𝑓 restricts to 𝑌 ⧵ 𝐶 ≅ 𝑋 ⧵ 𝑝 for 𝑝 ∈ 𝑋.
b) 𝑓−1(𝑝) = 𝐶.

Idea: study the singular point 𝑝 ∈ 𝑋 by means of the resolution 𝑓.

The contraction 𝑓 is a minimal model for 𝑋.



Deformations
Let us place ourselves in the following setting:
• 𝐴 a 𝑘-algebra.
• 𝑀 a right 𝐴-module.
• Λ a finite-dimensional local 𝑘-algebra.
• 𝔪 ⊂ Λ the maximal ideal, so 𝑘 ≅ Λ/𝔪.

AΛ-deformation of𝑀 is a left flatΛ-𝐴-bimodule𝑁 equipped with
an isomorphism

𝜑𝑁 ∶ 𝑘 ⊗Λ 𝑁
≅⟶𝑀.

An isomorphism ofΛ-deformations is aΛ-𝐴-bimodule
isomorphism𝜓∶ 𝑁 ≅→ 𝑁 ′ such that the following triangle
commutes

𝑘 ⊗Λ 𝑁 𝑘 ⊗Λ 𝑁 ′

𝑀

𝑘⊗Λ𝜓

𝜑𝑁 𝜑𝑁′
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The contraction algebra

LetA = Mod(𝐴) be the category of right 𝐴-modules,𝑀 ∈ A. The
(non-commutative) deformation functor is defined as follows:

DefA𝑀 ∶ Art ⟶ Set,
Λ ↦ DefA𝑀(Λ) = {Λ-deformations of𝑀}/≅.

TakeA = Qcoh(𝑌 ) and𝑀 = 𝑖∗Oℙ1 (−1)with 𝑖 ∶ 𝐶 ↪ 𝑌.

Theorem (Donovan andWemyss 2016)
The functor DefA𝑀 ≅ HomArt(Λcon⏟⏟⏟⏟⏟

Contraction algebra

, −) is representable.

This extends to 𝐶 red = ⋃𝑛
𝑖=1 𝐶𝑖 with 𝐶𝑖 ≅ ℙ1.

Conjecture (Donovan andWemyss 2016)

Ô𝑋,𝑝 ≅ Ô𝑋 ′,𝑝′ ⟺D𝑏(Λcon) ≃ D𝑏(Λ′
con).

August 2020 proved⇒.
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The derived contraction algebra

The derived contraction algebra Γ pro-represents the corresponding
derived deformation functor of Efimov, Lunts, and Orlov 2010:
• Γ is concentrated in ≤ 0.
• 𝐻0(Γ) = Λcon = Λ.
• Γ is smooth, Γ ∈ D𝑐(Γe).
• Γ is 3-Calabi–Yau, HomΓe (Γ, Γe) = Γ[−3].

Let D 𝑓𝑑(Γ) ⊂ D𝑐(Γ) be spanned by 𝑋with dim𝐻∗(𝑋) < ∞.

The Amiot 2009 cluster DG category, which is the Drinfeld 2004
pre-triangulated quotient (Bondal and Kapranov 1991),

C
𝑑𝑔
Γ = D𝑐(Γ)/D 𝑓𝑑(Γ).

Theorem (Hua and Keller 2021)

Ô𝑋,𝑝 ≅ Ô𝑋 ′,𝑝′ ⟺ C
𝑑𝑔
Γ ≃ C

𝑑𝑔
Γ′ .
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Can we recover C𝑑𝑔Γcon
fromΛ ?



The cluster category

The Amiot 2007 cluster category

T = CΓ = 𝐻 0(C𝑑𝑔Γ ) ≃ D𝑐(C𝑑𝑔Γ )

has the following properties:
1. Small, idempotent-complete, and Hom-finite.

2. 2–Calabi-Yau
Hom(T(𝑥, 𝑦), 𝑘) ≅ T(𝑦, 𝑥[2]).

3. 2-periodic, i.e. [2] ∶ T → T is the identity functor.
4. T = thick(𝑐)where 𝑐 = Γ. Moreover, any object in T is the

mapping cone of a map between retracts of finite directs sums
of copies of 𝑐.

5. 𝑐 does not have self-extensions, T(𝑐, 𝑐[1]) = 0.
6. Λ = T(𝑐, 𝑐) is a symmetric algebra by 2 and 3.

Properties 3+4+5⇒𝑐 ∈ T is a 2ℤ-clsuter tilting object.
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Recognition principle

A (small) triangulated category T is algebraic in the sense of Keller
2007 if T = D𝑐(A) for some DG categoryA. We then say thatA is an
enhancement or model of T.

Theorem (Jasso–M.’22)
1. The cluster category CΓ admits a unique enhancement up to

Morita equivalence.
2. Any small, Hom-finite, idempotent-complete, algebraic

triangulated category T with a 2ℤ-cluster tilting object 𝑐 ∈ T

with endomorphism algebra T(𝑐, 𝑐) = Λ and T(𝑐, 𝑐[2]) ≅ Λ as
Λ-bimodules is

T ≃ CΓ.

Corollary
The Donovan andWemyss 2016 conjecture holds.



Recognition principle

A (small) triangulated category T is algebraic in the sense of Keller
2007 if T = D𝑐(A) for some DG categoryA. We then say thatA is an
enhancement or model of T.

Theorem (Jasso–M.’22)
1. The cluster category CΓ admits a unique enhancement up to

Morita equivalence.
2. Any small, Hom-finite, idempotent-complete, algebraic

triangulated category T with a 2ℤ-cluster tilting object 𝑐 ∈ T

with endomorphism algebra T(𝑐, 𝑐) = Λ and T(𝑐, 𝑐[2]) ≅ Λ as
Λ-bimodules is

T ≃ CΓ.

Corollary
The Donovan andWemyss 2016 conjecture holds.



Recognition principle

A (small) triangulated category T is algebraic in the sense of Keller
2007 if T = D𝑐(A) for some DG categoryA. We then say thatA is an
enhancement or model of T.

Theorem (Jasso–M.’22)
1. The cluster category CΓ admits a unique enhancement up to

Morita equivalence.
2. Any small, Hom-finite, idempotent-complete, algebraic

triangulated category T with a 2ℤ-cluster tilting object 𝑐 ∈ T

with endomorphism algebra T(𝑐, 𝑐) = Λ and T(𝑐, 𝑐[2]) ≅ Λ as
Λ-bimodules is

T ≃ CΓ.

Corollary
The Donovan andWemyss 2016 conjecture holds.



Generators

Let us place ourselves in the following situation1:
1. T is a small, algebraic, idempotent-complete, Hom-finite

triangulated category.

2. 𝑐 ∈ T is a 2ℤ-cluster tilting object.
3. Λ = T(𝑐, 𝑐) is symmetric, hence self-injective.
4. T(𝑐, 𝑐[2]) ≅ Λ asΛ-bimodules.
5. A is a pre-triangulated enhancement of T.
6. 𝐴 = A(𝑐, 𝑐) the endomorphism DG algebra of 𝑐.

ThenA is Morita equivalent to 𝐴,

𝐻∗(𝐴) = T∗(𝑐, 𝑐) = ⨁
𝑛∈ℤ

T(𝑐, 𝑐[𝑛]) = ⨁
2∣𝑛

Λ = Λ[𝑡±1], |𝑡| = −2,

and 𝐴 can be recovered from a minimal 𝐴∞-model built onΛ[𝑡±1].

1The previous theorem holds in this generality.
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Recovering the enhancement from the cohomology

A minimal 𝐴∞-algebra structure on the graded algebraΛ[𝑡±1] is
given by operations (Stasheff 1963):

𝑚𝑛 ∶ Λ[𝑡±1]⊗
𝑛⋯ ⊗Λ[𝑡±1] ⟶ Λ[𝑡±1], |𝑚𝑛| = 2 − 𝑛, 𝑛 ≥ 1,

satisfying equations:

• 𝑚1 = 0 by minimality.
• 𝑚2 is the product inΛ[𝑡±1].
• 𝑚2𝑛+1 = 0 sinceΛ[𝑡±1] is concentrated in even degrees.
• 𝑚4 ∈ C4,−2(Λ[𝑡±1]) is a Hochschild cocycle. Its class

{𝑚4} ∈ HH4,−2(Λ[𝑡±1])

is called universal Massey product of length 4.
• 𝑚6 ∈ C6,−4(Λ[𝑡±1]) is a Hochschild cochain such that

𝜕(𝑚6) +
[𝑚4,𝑚4]

2
= 0 so

[{𝑚4}, {𝑚4}]
2

= 0.

• …
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The universal Massey product

Universal Massey products go back to Kadeishvili 1982; Baues and
Dreckmann 1989; Benson, Krause, and Schwede 2004; Kaledin
2007…

Theorem (Jasso–M.’22)
Given 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝐻∗(𝐴) = Λ[𝑡±1]whose Massey product exists,

−𝑚4(𝑥, 𝑦, 𝑧, 𝑡) ∈ ⟨𝑥, 𝑦, 𝑧, 𝑡⟩.

This Massey product coincides with the Toda bracket in T of

𝑐 𝑡→ 𝑐 𝑧→ 𝑐 𝑦→ 𝑐 𝑥→ 𝑐.

The first property was believed to hold for any DG algebra, any
minimal 𝐴∞-model, Massey products of any length 𝑛, and𝑚𝑛, but
Buijs, Moreno-Fernández, and Murillo 2020 found
counterexamples.
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The restricted universal Massey product

The inclusion 𝑗 ∶ Λ ↪ Λ[𝑡±1] of the degree 0 part induces

𝑗∗ ∶ HH4,−2(Λ[𝑡±1], Λ[𝑡±1]) ⟶ HH4,−2(Λ, Λ[𝑡±1]),
{𝑚4} ↦ 𝑗∗{𝑚4}⏟⏟⏟⏟⏟⏟⏟
Restricted universal Massey product

.

SinceΛ is ungraded andΛ[𝑡±1] is concentrated in even degrees,

HH𝑝,𝑞(Λ, Λ[𝑡±1]) = HH𝑝(Λ, Λ[𝑡±1]𝑞)

= { HH𝑝(Λ, Λ) = Ext𝑝Λe (Λ, Λ), 𝑞 even,
0, 𝑞 odd.
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The restricted universal Massey product

SinceΛ is self-injective, it has complete projective-injective
resolutions as aΛ-bimodule and we can define Tate Exts and
Hochschild–Tate cohomology

HH•,∗(Λ, Λ[𝑡±1]) = Ext•,∗Λe (Λ, Λ[𝑡±1]), •, ∗ ∈ ℤ.

There is a natural comparison map

HH•,∗(Λ, Λ[𝑡±1]) ⟶ HH•,∗(Λ, Λ[𝑡±1])

which is bijective for • > 0 and surjective for • = 0.

Theorem (Jasso–M.’22)
The restricted universal Massey product 𝑗∗{𝑚4} ∈ HH4,−2(Λ, Λ[𝑡±1])
is a unit in HH•,∗(Λ, Λ[𝑡±1]).

This follows from the connections between Toda brackets in T,
Massey products in𝐻∗(𝐴), and the universal Massey product.
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Intrinsic formality

A DG algebra 𝐵 is formal if 𝐵 ≃ 𝐻∗(𝐵).

A graded algebra 𝐶 is intrinsically formal if, given a DG algebra 𝐵,

𝐻∗(𝐵) ≅ 𝐶 ⟹ 𝐵 ≃ 𝐶.

Equivalently, given DG algebras 𝐵1, 𝐵2,

𝐻∗(𝐵𝑖) ≅ 𝐶 ⟹ 𝐵1 ≃ 𝐵2.

Theorem (Kadeishvili 1988)
HH𝑛+2,−𝑛(𝐶 ) = 0 for 𝑛 > 0⇒ 𝐶 is intrinsically formal.

If𝐻∗(𝐵) ≅ 𝐶 is concentrated in even degrees and
{𝑚𝐵

4 } ≠ 0 ∈ HH4,−2(𝐶 ) then 𝐶 is not intrinsically formal. In
particularΛ[𝑡±1] is not intrinsically formal ifΛ is not separable.
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A separable example

IfΛ = 𝑘 the algebraic triangulated category

T = D𝑐(𝑘[𝑡±1]) ≃ mod(𝑘) × mod(𝑘)

has a basic 2ℤ-cluster tilting object

𝑐 = 𝑘[𝑡±1] ↦ (𝑘, 0)

with (intrinsically formal graded) endomorphism algebra

T(𝑐, 𝑐) = Λ = 𝑘, T∗(𝑐, 𝑐) = Λ[𝑡±1] = 𝑘[𝑡±1],

by Kadeishvili 1988, since

HH•,∗(𝑘[𝑡±1]) = 𝑘[𝑡±1, 𝛿]

with
𝛿 ∈ HH1,0(𝑘[𝑡±1])

the fractional Euler class, defined by 𝛿|Λ = 0 and 𝛿(𝑡) = −𝑡.



Massey formality

An even Massey algebra (𝐶 ,𝑚) is a graded algebra 𝐶 concentrated
in even degrees and

𝑚 ∈ HH4,−2(𝐶 ),
[𝑚,𝑚]

2
= 0.

We say that (𝐶 ,𝑚) is Massey formal if, given DG algebras 𝐵1, 𝐵2,

𝐻∗(𝐵𝑖) ≅ 𝐶
{𝑚𝐵𝑖

4 } ↦ 𝑚
}⟹ 𝐵1 ≃ 𝐵2.

The Hochschild cohomology of an even Massey algebra
HH•,∗(𝐶 ,𝑚) is the cohomology of the complex

(HH•,∗(𝐶 ), [𝑚, −]).

Theorem (Jasso–M.’22)
HH𝑛+2,−𝑛(𝐶 ,𝑚) = 0 for 𝑛 > 2⇒ (𝐶,𝑚) is Massey formal.
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Uniqueness

Theorem (Jasso–M.’22)
Up to isomorphism, there exists a unique even Massey algebra
(Λ[𝑡±1],𝑚) such that 𝑗∗(𝑚) is a Hochschild–Tate unit. Moreover, it
is Massey formal. In particular T has a unique enhancement.

Proof

1. 𝑗∗𝑚 ∈ HH4,−2(Λ, Λ[𝑡±1]) is a unit in HH•,∗(Λ, Λ[𝑡±1]).
2. HH•,∗(Λ, Λ[𝑡±1]) → HH•,∗(Λ, Λ[𝑡±1]) is an isomorphism for
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Triangulated Auslander–Iyama correspondence

Theorem (Jasso–M.’22)
Let 𝑘 be a perfect field. There is a bijection between equivalence
classes of pairs:

1. (T, 𝑐)where:
a) T is a small, idempotent-complete, Hom-finite, algebraic

triangulated category.
b) 𝑐 is a 2ℤ-cluster tilting object such that T(𝑐, 𝑐[2]) ≅ T(𝑐, 𝑐) as

T(𝑐, 𝑐)-bimodules

2. Λ is a self-injective finite-dimensional algebra such that
HH•(Λ) has a unit in degree 4.

The bijection is given byΛ = T(𝑐, 𝑐).
These triangulated categories admit a unique DG enhancement.



Surjectivity

A degree 4 unit in HH•(Λ) is an element of

𝑢 ∈ HH4(Λ) = Ext4Λe (Λ, Λ) = HH4,−2(Λ, Λ[𝑡±1]).

We can construct a DG algebra 𝐵 such that

𝐻∗(𝐵) ≅ Λ[𝑡±1], 𝑗∗{𝑚4} ↦ 𝑢 ∈HH4,−2(Λ, Λ[𝑡±1]).

Then T = D𝑐(𝐵) has 2ℤ-cluster tilting object 𝑐 = 𝐵with the
required properties.
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2
= 0.

Theorem (Jasso–M.’22)
Given an even Massey algebra (𝐶 ,𝑚), if HH𝑛+1,−𝑛(𝐶 ,𝑚) = 0 for
𝑛 > 7 then there exists a DG algebra 𝐵with

𝐻∗(𝐵) ≅ 𝐶, {𝑚4} ↦ 𝑚.
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Thanks for your attention! SMILE
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Contractible curves

Taken from Molina and Tosun 2020.



Triangulated Auslander–Iyama correspondence

Theorem (Jasso–M.’22)
Let 𝑘 be a perfect field and 𝑑 ≥ 1. There is a bijection between
equivalence classes of pairs:

1. (T, 𝑐)where:
a) T a small algebraic triangulated category with

finite-dimensional Hom’s and split idempotents.
b) 𝑐 a basic 𝑑ℤ-cluster tilting object.

2. (Λ, [𝜎])where:
a) Λ a basic finite-dimensional self-injective twisted

(𝑑 + 2)-periodic algebra.
b) [𝜎] ∈ Out(Λ) such thatΩ𝑑+2

Λe (Λ) ≅ 1Λ𝜎 in mod(Λe).

The bijection is given byΛ = T(𝑐, 𝑐) and 1Λ𝜎 = T(𝑐[𝑑], 𝑐).a

These triangulated categories admit a unique DG enhancement.
aAs objects, 𝑐[𝑑] = 𝑐 but [𝑑] does not act like the identity onΛ = T(𝑐, 𝑐).


	Formality-like results
	Proof of the main theorem
	Main theorem

