Obstructions to Adams representability

Fernando Muro

Universidad de Sevilla

(based on joint work with O. Raventos, from U. Barcelona)

Triangulated categories and applications Banff, June 12–17, 2011

・ 聞 と く ヨ と く ヨ と …

æ

Let **T** be the stable homotopy category and **C** the full subcategory of compact spectra.

Definition

A cohomological functor $H: \mathbf{C}^{op} \to \mathbf{Ab}$ is an additive functor which takes exact triangles to exact sequences.

Example

For any X in **T** the restricted representable functor $\mathbf{T}(-, X)_{|\mathbf{C}} : \mathbf{C}^{op} \to \mathbf{Ab}$ is cohomological.

Theorem (Adams' representability theorem, 1971)

[ARO] Any cohomological functor $H: \mathbb{C}^{op} \to Ab$ is of the form $H \cong \mathbb{T}(-, X)_{|\mathbb{C}}$ for some X in T.

Let **T** be the stable homotopy category and **C** the full subcategory of compact spectra.

Definition

A cohomological functor $H: \mathbf{C}^{op} \to \mathbf{Ab}$ is an additive functor which takes exact triangles to exact sequences.

Example

For any X in T the restricted representable functor $T(-,X)|_{C} : C^{op} \to Ab$ is cohomological.

Theorem (Adams' representability theorem, 1971)

[ARO] Any cohomological functor $H: \mathbb{C}^{op} \to Ab$ is of the form $H \cong \mathbb{T}(-, X)_{|\mathbb{C}}$ for some X in T.

Let **T** be the stable homotopy category and **C** the full subcategory of compact spectra.

Definition

A cohomological functor $H: \mathbf{C}^{op} \to \mathbf{Ab}$ is an additive functor which takes exact triangles to exact sequences.

Example

For any X in T the restricted representable functor $T(-,X)|_{C} : C^{op} \to Ab$ is cohomological.

Theorem (Adams' representability theorem, 1971)

[ARO] Any cohomological functor $H: \mathbb{C}^{op} \to Ab$ is of the form $H \cong \mathbb{T}(-, X)_{|\mathbb{C}}$ for some X in T.

Let **T** be the stable homotopy category and **C** the full subcategory of compact spectra.

Definition

A cohomological functor $H: \mathbf{C}^{op} \to \mathbf{Ab}$ is an additive functor which takes exact triangles to exact sequences.

Example

For any X in T the restricted representable functor $T(-,X)|_{C} : C^{op} \to Ab$ is cohomological.

Theorem (Adams' representability theorem, 1971)

[ARO] Any cohomological functor $H: \mathbb{C}^{op} \to Ab$ is of the form $H \cong \mathbb{T}(-, X)_{|\mathbb{C}}$ for some X in T.

Theorem (Christensen'98)

С

Given two objects X and Y in \mathbf{T} , there is a short exact sequence where the kernel is the set of phantom maps,

$$\lim_{\substack{C \to X \\ compact}} \mathbf{T}(\Sigma C, Y) \rightarrowtail \mathbf{T}(X, Y) \twoheadrightarrow \lim_{\substack{C \to X \\ C \text{ compact}}} \mathbf{T}(C, Y)$$

Definition

A morphism $f: X \to Y$ in **T** is a phantom map if $\mathbf{T}(C, f) = 0$ for any C in **C**.

Theorem (Neeman'97, Christensen–Strickland'98)

Phantom maps form a square zero ideal in **T**.

イロト イポト イヨト イヨト

Theorem (Christensen'98)

С

Given two objects X and Y in \mathbf{T} , there is a short exact sequence where the kernel is the set of phantom maps,

$$\lim_{\substack{C \to X \\ compact}} \mathbf{T}(\Sigma C, Y) \rightarrowtail \mathbf{T}(X, Y) \twoheadrightarrow \lim_{\substack{C \to X \\ C \text{ compact}}} \mathbf{T}(C, Y)$$

Definition

A morphism $f: X \to Y$ in **T** is a phantom map if $\mathbf{T}(C, f) = 0$ for any C in **C**.

Theorem (Neeman'97, Christensen–Strickland'98)

Phantom maps form a square zero ideal in T.

イロト イポト イヨト イヨト

Let Mod(C) be the abelian category of C-modules, i.e. additive functors $C^{op} \rightarrow Ab$.

Homological functors are the flat objects in Mod(C).

The restricted Yoneda functor

 $\mathbf{T} \longrightarrow \mathsf{Mod}(\mathbf{C}),$ $X \mapsto \mathbf{T}(-,X)_{|\mathbf{C}},$

is, by Adams' representability theorem, full and essentially surjective onto the full subcategory Flat(**C**) of flat objects.

The subset of fantom maps in $\mathbf{T}(X, Y)$ is naturally isomorphic to $\operatorname{Ext}^{1}_{\mathbf{C}}(\mathbf{T}(-, X)_{|\mathbf{C}}, \mathbf{T}(-, Y)_{|\mathbf{C}})$, and there is a square-zero extension

 $\operatorname{Ext}^{1}_{\mathbf{C}} \rightarrow \mathbf{T} \rightarrow \operatorname{Flat}(\mathbf{C}),$

which is classified by a Hochschild-Mitchell cohomology class

 $\{\mathsf{Ext}^1_{\mathbf{C}} \rightarrowtail \mathbf{T} \twoheadrightarrow \mathsf{Flat}(\mathbf{C})\} \in H^2(\mathsf{Flat}(\mathbf{C}), \mathsf{Ext}^1_{\mathbf{C}}).$

Let Mod(C) be the abelian category of C-modules, i.e. additive functors $C^{op} \rightarrow Ab$.

Homological functors are the flat objects in Mod(C).

The restricted Yoneda functor

 $\mathbf{T} \longrightarrow \mathsf{Mod}(\mathbf{C}),$ $X \mapsto \mathbf{T}(-,X)_{|\mathbf{C}},$

is, by Adams' representability theorem, full and essentially surjective onto the full subcategory Flat(**C**) of flat objects.

The subset of fantom maps in $\mathbf{T}(X, Y)$ is naturally isomorphic to $\operatorname{Ext}^{1}_{\mathbf{C}}(\mathbf{T}(-, X)_{|\mathbf{C}}, \mathbf{T}(-, Y)_{|\mathbf{C}})$, and there is a square-zero extension

 $\operatorname{Ext}^{1}_{\mathbf{C}} \rightarrow \mathbf{T} \rightarrow \operatorname{Flat}(\mathbf{C}),$

which is classified by a Hochschild-Mitchell cohomology class

 $\{\mathsf{Ext}^1_{\mathbf{C}} \rightarrowtail \mathbf{T} \twoheadrightarrow \mathsf{Flat}(\mathbf{C})\} \in H^2(\mathsf{Flat}(\mathbf{C}), \mathsf{Ext}^1_{\mathbf{C}}).$

Let Mod(C) be the abelian category of C-modules, i.e. additive functors $C^{op} \rightarrow Ab$.

Homological functors are the flat objects in Mod(C).

The restricted Yoneda functor

 $egin{array}{lll} \mathbf{T} \longrightarrow \mathsf{Mod}(\mathbf{C}), \ X \ \mapsto \ \mathbf{T}(-,X)_{|\mathbf{C}}, \end{array}$

is, by Adams' representability theorem, full and essentially surjective onto the full subcategory $Flat(\mathbf{C})$ of flat objects.

The subset of fantom maps in $\mathbf{T}(X, Y)$ is naturally isomorphic to $\operatorname{Ext}^{1}_{\mathbf{C}}(\mathbf{T}(-, X)_{|\mathbf{C}}, \mathbf{T}(-, Y)_{|\mathbf{C}})$, and there is a square-zero extension

 $\operatorname{Ext}_{\mathbf{C}}^{1} \rightarrowtail \mathbf{T} \twoheadrightarrow \operatorname{Flat}(\mathbf{C}),$

which is classified by a Hochschild-Mitchell cohomology class

 $\{\mathsf{Ext}^1_{\mathbf{C}} \rightarrowtail \mathbf{T} \twoheadrightarrow \mathsf{Flat}(\mathbf{C})\} \in H^2(\mathsf{Flat}(\mathbf{C}), \mathsf{Ext}^1_{\mathbf{C}}).$

Let Mod(C) be the abelian category of C-modules, i.e. additive functors $C^{op} \rightarrow Ab$.

Homological functors are the flat objects in Mod(**C**).

The restricted Yoneda functor

 $egin{array}{lll} \mathbf{T} \longrightarrow \mathsf{Mod}(\mathbf{C}), \ X \ \mapsto \ \mathbf{T}(-,X)_{|\mathbf{C}}, \end{array}$

is, by Adams' representability theorem, full and essentially surjective onto the full subcategory $Flat(\mathbf{C})$ of flat objects.

The subset of fantom maps in $\mathbf{T}(X, Y)$ is naturally isomorphic to $\operatorname{Ext}^{1}_{\mathbf{C}}(\mathbf{T}(-, X)_{|\mathbf{C}}, \mathbf{T}(-, Y)_{|\mathbf{C}})$, and there is a square-zero extension

$$\mathsf{Ext}^1_{\mathbf{C}} \rightarrowtail \mathbf{T} \twoheadrightarrow \mathsf{Flat}(\mathbf{C}),$$

which is classified by a Hochschild-Mitchell cohomology class

$$\{\mathsf{Ext}^1_{\mathbf{C}}\rightarrowtail \mathbf{T}\twoheadrightarrow\mathsf{Flat}(\mathbf{C})\}\in H^2(\mathsf{Flat}(\mathbf{C}),\mathsf{Ext}^1_{\mathbf{C}}).$$

Can we generalize Adam's theorem to other categories?

If **T** is a compactly generated triangulated category we can take the subcategory **C** of compact objects, i.e. objects *C* in **T** such that

$$\mathbf{T}\left(C,\coprod_{i\in I}X_i\right)=\coprod_{i\in I}\mathbf{T}(C,X_i).$$

Theorem (Neeman'97)

If C is countable then Adams' representability theorem holds.

- Stable homotopy category.
- D(R) if R is a countable ring, e.g. \mathbb{Z} .
- The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(countable rings) [Voevodsky'98, Naumann–Spitzweck'09].

Can we generalize Adam's theorem to other categories?

If **T** is a compactly generated triangulated category we can take the subcategory **C** of compact objects, i.e. objects C in **T** such that

$$\mathbf{T}\left(C,\prod_{i\in I}X_i\right)=\prod_{i\in I}\mathbf{T}(C,X_i).$$

Theorem (Neeman'97)

If C is countable then Adams' representability theorem holds.

- Stable homotopy category.
- D(R) if R is a countable ring, e.g. \mathbb{Z} .
- The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(countable rings) [Voevodsky'98, Naumann–Spitzweck'09].

Can we generalize Adam's theorem to other categories?

If **T** is a compactly generated triangulated category we can take the subcategory **C** of compact objects, i.e. objects C in **T** such that

$$\mathbf{T}\left(C,\coprod_{i\in I}X_i\right)=\coprod_{i\in I}\mathbf{T}(C,X_i).$$

Theorem (Neeman'97)

If C is countable then Adams' representability theorem holds.

- Stable homotopy category.
- D(R) if R is a countable ring, e.g. \mathbb{Z} .
- The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(countable rings) [Voevodsky'98, Naumann–Spitzweck'09].

Can we generalize Adam's theorem to other categories?

If **T** is a compactly generated triangulated category we can take the subcategory **C** of compact objects, i.e. objects C in **T** such that

$$\mathbf{T}\left(C,\coprod_{i\in I}X_i\right)=\coprod_{i\in I}\mathbf{T}(C,X_i).$$

Theorem (Neeman'97)

If C is countable then Adams' representability theorem holds.

Example

- Stable homotopy category.
- D(R) if R is a countable ring, e.g. \mathbb{Z} .

 The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(countable rings) [Voevodsky'98, Naumann–Spitzweck'09].

Can we generalize Adam's theorem to other categories?

If **T** is a compactly generated triangulated category we can take the subcategory **C** of compact objects, i.e. objects C in **T** such that

$$\mathbf{T}\left(C,\coprod_{i\in I}X_i\right)=\coprod_{i\in I}\mathbf{T}(C,X_i).$$

Theorem (Neeman'97)

If C is countable then Adams' representability theorem holds.

Example

- Stable homotopy category.
- D(R) if R is a countable ring, e.g. \mathbb{Z} .

 The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(countable rings) [Voevodsky'98, Naumann–Spitzweck'09].

Can we generalize Adam's theorem to other categories?

If **T** is a compactly generated triangulated category we can take the subcategory **C** of compact objects, i.e. objects C in **T** such that

$$\mathbf{T}\left(C,\prod_{i\in I}X_i\right)=\prod_{i\in I}\mathbf{T}(C,X_i).$$

Theorem (Neeman'97)

If C is countable then Adams' representability theorem holds.

- Stable homotopy category.
- D(R) if R is a countable ring, e.g. \mathbb{Z} .
- The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(countable rings) [Voevodsky'98, Naumann–Spitzweck'09].

Can we generalize Adam's theorem to other categories?

If **T** is a compactly generated triangulated category we can take the subcategory **C** of compact objects, i.e. objects C in **T** such that

$$\mathbf{T}\left(C,\prod_{i\in I}X_i\right)=\prod_{i\in I}\mathbf{T}(C,X_i).$$

Theorem (Neeman'97)

If C is countable then Adams' representability theorem holds.

- Stable homotopy category.
- D(R) if R is a countable ring, e.g. \mathbb{Z} .
- The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(countable rings) [Voevodsky'98, Naumann–Spitzweck'09].

Can we generalize Adam's theorem to other categories?

If **T** is a compactly generated triangulated category we can take the subcategory **C** of compact objects, i.e. objects C in **T** such that

$$\mathbf{T}\left(C,\prod_{i\in I}X_i\right)=\prod_{i\in I}\mathbf{T}(C,X_i).$$

Theorem (Neeman'97)

If C is countable then Adams' representability theorem holds.

- Stable homotopy category.
- D(R) if R is a countable ring, e.g. \mathbb{Z} .
- The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(countable rings) [Voevodsky'98, Naumann–Spitzweck'09].

Theorem (Christensen–Keller–Neeman'01)

If k is a field of card $k \ge \aleph_2$ then $D(k\langle x, y \rangle)$ does not satisfy Adams' representability theorem, neither [ARM] nor [ARO].

Can we generalize Adam's theorem in another direction?

Let **T** be a well generated triangulated category and α a regular cardinal.

Recall that $\alpha = \aleph_0$ is a regular cardinal because any finite sum of finite cardinals is finite. In general, replace 'finite' with '< α '.

Let **C** be the full subcategory of α -compact objects. An object *C* in **C** satisfies

$$\mathbf{T}\left(C,\coprod_{i\in I}X_i\right) = \operatorname{colim}_{\substack{J\subset I\\\#J<\alpha}}\mathbf{T}\left(C,\coprod_{j\in J}X_j\right)$$

・ロト ・ 理 ト ・ ヨ ト ・

Theorem (Christensen–Keller–Neeman'01)

If k is a field of card $k \ge \aleph_2$ then $D(k\langle x, y \rangle)$ does not satisfy Adams' representability theorem, neither [ARM] nor [ARO].

Can we generalize Adam's theorem in another direction?

Let **T** be a well generated triangulated category and α a regular cardinal.

Recall that $\alpha = \aleph_0$ is a regular cardinal because any finite sum of finite cardinals is finite. In general, replace 'finite' with '< α '.

Let **C** be the full subcategory of α -compact objects. An object *C* in **C** satisfies

$$\mathbf{T}\left(C,\coprod_{i\in I}X_i\right) = \operatorname{colim}_{\substack{J\subset I\\\#J<\alpha}}\mathbf{T}\left(C,\coprod_{j\in J}X_j\right)$$

イロト 不得 とくほ とくほ とう

Theorem (Christensen–Keller–Neeman'01)

If k is a field of card $k \ge \aleph_2$ then $D(k\langle x, y \rangle)$ does not satisfy Adams' representability theorem, neither [ARM] nor [ARO].

Can we generalize Adam's theorem in another direction?

Let **T** be a well generated triangulated category and α a regular cardinal.

Recall that $\alpha = \aleph_0$ is a regular cardinal because any finite sum of finite cardinals is finite. In general, replace 'finite' with '< α '.

Let **C** be the full subcategory of α -compact objects. An object *C* in **C** satisfies

$$\mathbf{T}\left(C,\coprod_{i\in I}X_i\right) = \operatorname{colim}_{\substack{J\subset I\\\#J<\alpha}}\mathbf{T}\left(C,\coprod_{j\in J}X_j\right)$$

イロト 不得 とくほ とくほ とうほ

Theorem (Christensen–Keller–Neeman'01)

If k is a field of card $k \ge \aleph_2$ then $D(k\langle x, y \rangle)$ does not satisfy Adams' representability theorem, neither [ARM] nor [ARO].

Can we generalize Adam's theorem in another direction?

Let **T** be a well generated triangulated category and α a regular cardinal.

Recall that $\alpha = \aleph_0$ is a regular cardinal because any finite sum of finite cardinals is finite. In general, replace 'finite' with '< α '.

Let **C** be the full subcategory of α -compact objects. An object *C* in **C** satisfies

$$\mathbf{T}\left(C,\coprod_{i\in I}X_i\right) = \operatorname{colim}_{\substack{J\subset I\\ \#J<\alpha}}\mathbf{T}\left(C,\coprod_{j\in J}X_j\right)$$

イロン 不得 とくほ とくほ とうほ

Theorem (Christensen–Keller–Neeman'01)

If k is a field of card $k \ge \aleph_2$ then $D(k\langle x, y \rangle)$ does not satisfy Adams' representability theorem, neither [ARM] nor [ARO].

Can we generalize Adam's theorem in another direction?

Let **T** be a well generated triangulated category and α a regular cardinal.

Recall that $\alpha = \aleph_0$ is a regular cardinal because any finite sum of finite cardinals is finite. In general, replace 'finite' with '< α '.

Let **C** be the full subcategory of α -compact objects. An object *C* in **C** satisfies

$$\mathbf{T}\left(C,\coprod_{i\in I}X_i\right) = \operatorname{colim}_{\substack{J\subset I\\ \#J<\alpha}}\mathbf{T}\left(C,\coprod_{j\in J}X_j\right)$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Definition

A cohomological functor $H: \mathbb{C}^{op} \to Ab$ is an additive functor which takes exact triangles to exact sequences, and if card $I < \alpha$ then

$$H\left(\coprod_{i\in I}C_i\right)=\prod_{i\in I}H(C_i).$$

Example

For any X in **T** the restricted representable functor $\mathbf{T}(-, X)_{|\mathbf{C}} : \mathbf{C}^{\text{op}} \to \mathbf{Ab}$ is cohomological.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Failed theorem (Rosicky'05)

If **T** is a well generated triangulated category with models then for big enough regular cardinals α the following holds:

[ARO] Any cohomological functor $H: \mathbb{C}^{op} \to Ab$ is of the form $H \cong T(-, X)_{|\mathbb{C}}$ for some X in T.

[ARM] Any natural transformation $T(-, X)_{|C} \rightarrow T(-, Y)_{|C}$ is induced by a morphism $f: X \rightarrow Y$ in T.

If Rosický's theorem were true for **T**, in addition to the obvious extensions of the previous results we would have:

Theorem (*Brown representability for the dual*, Neeman'09)

Any product-preserving functor $F : \mathbf{T} \to \mathbf{Ab}$ taking exact triangles to exact sequences is representable $F \cong \mathbf{T}(X, -)$.

ヘロマ 入画 アメ 回マ トロマ

э

Failed theorem (Rosicky'05)

If **T** is a well generated triangulated category with models then for big enough regular cardinals α the following holds:

[ARO] Any cohomological functor $H: \mathbb{C}^{op} \to Ab$ is of the form $H \cong T(-, X)_{|\mathbb{C}}$ for some X in T.

[ARM] Any natural transformation $T(-, X)_{|C} \rightarrow T(-, Y)_{|C}$ is induced by a morphism $f: X \rightarrow Y$ in T.

If Rosický's theorem were true for **T**, in addition to the obvious extensions of the previous results we would have:

Theorem (*Brown representability for the dual*, Neeman'09) Any product-preserving functor $F : \mathbf{T} \to \mathbf{Ab}$ taking exact triangles to

exact sequences is representable $F \cong \mathbf{T}(X, -)$.

ヘロン 人間 とくほ とくほど

$\mathbf{T} = \mathbf{a}$ well generated triangulated category with translation functor Σ .

 $\alpha =$ a regular cardinal.

$\mathbf{C} = a$ full essentially small subcategory of \mathbf{T} closed under Σ, Σ^{-1} ,

and $\prod of < \alpha$ objects, and such that **C** generates **T**.

 $Mod_{\alpha}(\mathbf{C}) =$ the graded abelian category of α -continuous **C**-modules,

i.e. functors $F: \mathbf{C}^{op} \rightarrow \mathbf{Ab}$ such that, if card $I < \alpha$, then

$$F\left(\coprod_{i\in I}C_i\right)=\prod_{i\in I}F(C_i).$$

grading

The restricted Yoneda functor

$$\mathbf{T} \longrightarrow \mathsf{Mod}_{\alpha}(\mathbf{C}),$$

 $X \mapsto \mathbf{T}(-,X)_{|\mathbf{C}},$

which induces an equivalence between the completion of **C** in **T** by coproducts and direct summands and projective objects in $Mod_{\alpha}(C)$.

◆夏→

∃ <2 <</p>

- \mathbf{T} = a well generated triangulated category with translation functor Σ .
- $\alpha = a$ regular cardinal.

$\boldsymbol{C}=~a$ full essentially small subcategory of \boldsymbol{T} closed under $\boldsymbol{\Sigma},~\boldsymbol{\Sigma}^{-1},$

and $\prod of < \alpha$ objects, and such that **C** generates **T**.

$Mod_{\alpha}(\mathbf{C}) =$ the graded abelian category of α -continuous **C**-modules,

i.e. functors $F : \mathbf{C}^{op} \rightarrow \mathbf{Ab}$ such that, if card $I < \alpha$, then

$$F\left(\coprod_{i\in I}C_i\right)=\prod_{i\in I}F(C_i).$$

The restricted Yoneda functor

$$\mathbf{T} \longrightarrow \mathsf{Mod}_{\alpha}(\mathbf{C}),$$

 $X \mapsto \mathbf{T}(-,X)_{|\mathbf{C}},$

which induces an equivalence between the completion of **C** in **T** by coproducts and direct summands and projective objects in $Mod_{\alpha}(C)$.

◆夏→

E DQC

- $\mathbf{T} = \mathbf{a}$ well generated triangulated category with translation functor Σ .
- $\alpha = a$ regular cardinal.
- ${f C}={\ }$ a full essentially small subcategory of ${f T}$ closed under ${\Sigma}, {\ } {\Sigma}^{-1},$

and $\prod of < \alpha$ objects, and such that **C** generates **T**.

 $\mathsf{Mod}_{\alpha}(\mathbf{C}) = \text{ the graded abelian category of } \alpha \text{-continuous } \mathbf{C}\text{-modules},$ i.e. functors $F \colon \mathbf{C}^{\mathsf{op}} \to \mathbf{Ab}$ such that, if card $I < \alpha$, then

$$F\left(\coprod_{i\in I}C_i\right)=\prod_{i\in I}F(C_i).$$

The restricted Yoneda functor

$$\mathbf{T} \longrightarrow \operatorname{Mod}_{lpha}(\mathbf{C}),$$

 $X \mapsto \mathbf{T}(-,X)_{|\mathbf{C}},$

which induces an equivalence between the completion of **C** in **T** by coproducts and direct summands and projective objects in $Mod_{\alpha}(C)$.

<=> = <0 < €</p>

- $\mathbf{T} = \mathbf{a}$ well generated triangulated category with translation functor Σ .
- $\alpha = a$ regular cardinal.
- $\bm{C}=~a$ full essentially small subcategory of \bm{T} closed under $\bm{\Sigma},~\bm{\Sigma}^{-1},$

and $\prod of < \alpha$ objects, and such that **C** generates **T**.

 $Mod_{\alpha}(\mathbf{C}) =$ the graded abelian category of α -continuous **C**-modules,

i.e. functors $F: \mathbf{C}^{\mathsf{op}} \to \mathbf{Ab}$ such that, if card $I < \alpha$, then

$$F\left(\coprod_{i\in I}C_i\right)=\prod_{i\in I}F(C_i).$$

grading

The restricted Yoneda functor

$$\mathbf{T} \longrightarrow \mathsf{Mod}_{\alpha}(\mathbf{C}),$$

 $X \mapsto \mathbf{T}(-,X)_{|\mathbf{C}},$

which induces an equivalence between the completion of **C** in **T** by coproducts and direct summands and projective objects in $Mod_{\alpha}(C)$.

◆夏→

- $\mathbf{T} = \mathbf{a}$ well generated triangulated category with translation functor Σ .
- $\alpha =$ a regular cardinal.
- $\boldsymbol{C}=~a$ full essentially small subcategory of \boldsymbol{T} closed under $\boldsymbol{\Sigma},~\boldsymbol{\Sigma}^{-1},$

and $\prod of < \alpha$ objects, and such that **C** generates **T**.

 $Mod_{\alpha}(\mathbf{C}) =$ the graded abelian category of α -continuous **C**-modules,

i.e. functors $F: \mathbf{C}^{op} \rightarrow \mathbf{Ab}$ such that, if card $I < \alpha$, then

$$F\left(\coprod_{i\in I}C_i\right)=\prod_{i\in I}F(C_i).$$

The restricted Yoneda functor

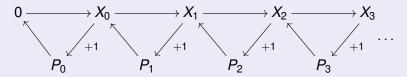
$$\mathbf{T} \longrightarrow \mathsf{Mod}_{\alpha}(\mathbf{C}),$$

 $X \mapsto \mathbf{T}(-,X)_{|\mathbf{C}},$

which induces an equivalence between the completion of **C** in **T** by coproducts and direct summands and projective objects in $Mod_{\alpha}(C)$.

Definition (Benson-Krause-Schwede'04)

A Postnikov resolution of $F : \mathbf{C}^{op} \to \mathbf{Ab}$ in $Mod_{\alpha}(\mathbf{C})$ is a diagram of exact triangles in \mathbf{T}



such that the induced complex

$$\cdots \leftarrow 0 \longleftarrow P_0 \longleftarrow P_1 \longleftarrow P_2 \longleftarrow P_3 \leftarrow \cdots$$

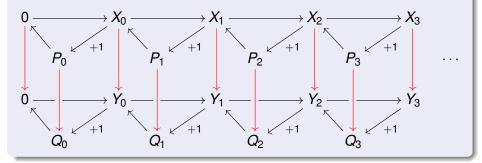
is a projective resolution of F.

ヨト イヨト

Postnikov resolutions

Definition

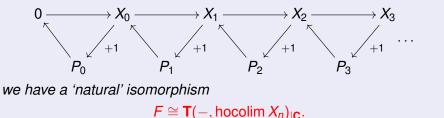
A morphism of Postnikov resolutions is a commutative diagram in T



Postnikov resolutions

Proposition

Given a Postnikov resolution of $F: \mathbf{C}^{op} \to \mathbf{Ab}$



In [BKS'04] when C consists of compact objects.

Postnikov resolutions

Proposition

Given X in T, any projective resolution of F = T(-, X)_{|C} can be completed to a Postnikov resolution, called good, such that hocolim X_n = X.

 A morphism f: X → Y can be extended to a morphism between any two good Postnikov resolutions of T(−, X)_{|C} and T(−, Y)_{|C} inducing f on homotopy colimits.

Corollary

- A functor F: C^{op} → Ab is of the form H ≅ T(−, X)_{|C} iff it admits a Postnikov resolution.
- A natural transformation T(−, X)_{|C} → T(−, Y)_{|C} is induced by a morphism f: X → Y iff it can be extended to a morphism between good Postnikov resolutions of T(−, X)_{|C} and T(−, Y)_{|C}.

ヘロン ヘアン ヘビン ヘビン

э

Proposition

- Given X in T, any projective resolution of F = T(-, X)_{|C} can be completed to a Postnikov resolution, called good, such that hocolim X_n = X.
- A morphism f: X → Y can be extended to a morphism between any two good Postnikov resolutions of T(-, X)_{|C} and T(-, Y)_{|C} inducing f on homotopy colimits.

Corollary

- A functor F: C^{op} → Ab is of the form H ≅ T(−, X)_{|C} iff it admits a Postnikov resolution.
- A natural transformation T(−, X)_{|C} → T(−, Y)_{|C} is induced by a morphism f: X → Y iff it can be extended to a morphism between good Postnikov resolutions of T(−, X)_{|C} and T(−, Y)_{|C}.

ヘロン ヘアン ヘビン ヘビン

Proposition

- Given X in T, any projective resolution of F = T(-, X)_{|C} can be completed to a Postnikov resolution, called good, such that hocolim X_n = X.
- A morphism f: X → Y can be extended to a morphism between any two good Postnikov resolutions of T(-, X)_{|C} and T(-, Y)_{|C} inducing f on homotopy colimits.

Corollary

- A functor F: C^{op} → Ab is of the form H ≅ T(−, X)_{|C} iff it admits a Postnikov resolution.
- A natural transformation T(−, X)_{|C} → T(−, Y)_{|C} is induced by a morphism f: X → Y iff it can be extended to a morphism between good Postnikov resolutions of T(−, X)_{|C} and T(−, Y)_{|C}.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Proposition

- Given X in T, any projective resolution of F = T(-, X)_{|C} can be completed to a Postnikov resolution, called good, such that hocolim X_n = X.
- A morphism f: X → Y can be extended to a morphism between any two good Postnikov resolutions of T(−, X)_{|C} and T(−, Y)_{|C} inducing f on homotopy colimits.

Corollary

- A functor F: C^{op} → Ab is of the form H ≅ T(−, X)_{|C} iff it admits a Postnikov resolution.
- A natural transformation T(−, X)_{|C} → T(−, Y)_{|C} is induced by a morphism f: X → Y iff it can be extended to a morphism between good Postnikov resolutions of T(−, X)_{|C} and T(−, Y)_{|C}.

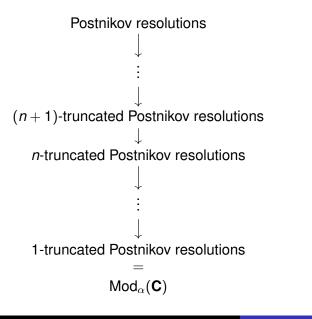
・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

The obstruction theory

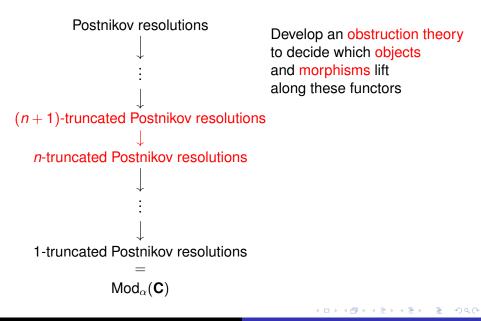
Postnikov resolutions

프 🖌 🛪 프 🛌

The obstruction theory

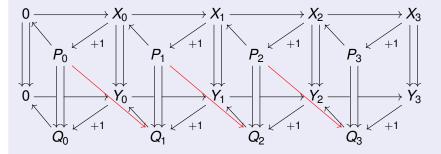


The obstruction theory



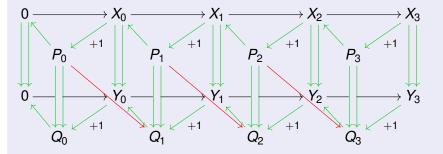
Definition

A homotopy between two morphisms of Postnikov resolutions is a sequence of morphisms $P_n \rightarrow Q_{n+1}$, $n \ge 0$,



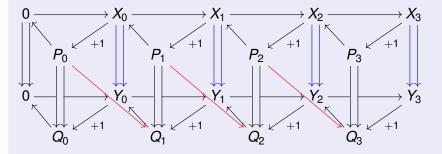
Definition

A homotopy between two morphisms of Postnikov resolutions is a sequence of morphisms $P_n \rightarrow Q_{n+1}$, $n \ge 0$,



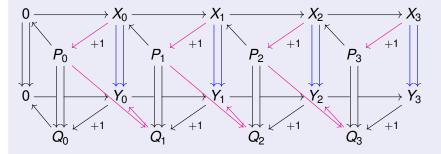
Definition

A homotopy between two morphisms of Postnikov resolutions is a sequence of morphisms $P_n \rightarrow Q_{n+1}$, $n \ge 0$,



Definition

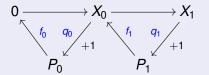
A homotopy between two morphisms of Postnikov resolutions is a sequence of morphisms $P_n \rightarrow Q_{n+1}$, $n \ge 0$,

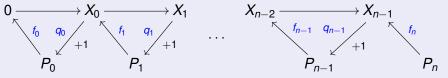


Truncated Postnikov resolutions

Definition

An *n*-truncated Postnikov resolution of $F: \mathbf{C}^{op} \to \mathbf{Ab}$ in $Mod_{\alpha}(\mathbf{C})$ consists of a diagram of n exact triangles in T with a tail





・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

and a projective resolution of F

$$P_0 \xleftarrow{+1}{q_0 f_1} P_1 \xleftarrow{+1}{q_1 f_2} \cdots \cdots \xleftarrow{+1}{q_{n-2} f_{n-1}} P_{n-1} \xleftarrow{+1}{q_{n-1} f_n} P_n \xleftarrow{+1}{d_{n+1}} P_{n+1} \xleftarrow{+1}{d_{n+2}} \cdots \cdots$$

such that $f_n d_{n+1} = 0$. Morphisms of truncated Postnikov resolutions

Truncated Postnikov resolutions

Definition

An *n*-truncated Postnikov resolution of $F : \mathbf{C}^{op} \to \mathbf{Ab}$ in $Mod_{\alpha}(\mathbf{C})$ consists of a diagram of *n* exact triangles in **T** with a tail

and a projective resolution of F

$$P_0 \xleftarrow{+1}{q_0 f_1} P_1 \xleftarrow{+1}{q_1 f_2} \cdots \cdots \xleftarrow{+1}{q_{n-2} f_{n-1}} P_{n-1} \xleftarrow{+1}{q_{n-1} f_n} P_n \xleftarrow{+1}{d_{n+1}} P_{n+1} \xleftarrow{+1}{d_{n+2}} \cdots \cdots$$

such that $f_n d_{n+1} = 0$. Morphisms of truncated Postnikov resolutions and homotopies between them are defined in the 'obvious' way.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem (Benson–Krause–Schwede'04)

Given an n-truncated Postnikov resolution of $F: \mathbf{C}^{op} \to \mathbf{Ab}$, there is an obstruction

$$\kappa_{n+2} \in \operatorname{Ext}^{n+2,-n}_{\mathbf{C}}(F,F)$$

which vanishes iff it can be extended to an (n + 1)-truncated Postnikov resolution.

프 🖌 🛪 프 🛌

The first possibly non-trivial obstruction is for n = 1 and it only depends on *F*.

$$\kappa_3(F) \in \operatorname{Ext}^{3,-1}_{\mathbf{C}}(F,F).$$

Proposition (Naturality, BKS'04)

Given a morphism $\tau \colon F \to G$ in $Mod_{\alpha}(\mathbf{C})$,

$$au \circ \kappa_3(F) = \kappa_3(G) \circ au \in \operatorname{Ext}^{3,| au|-1}_{\mathbf{C}}(F,G).$$

This means that κ_3 is a class in Hochschild–Mitchell cohomology,

$$\kappa_3 \in H^{0,-1}(\operatorname{Mod}_{\alpha}(\mathbf{C}),\operatorname{Ext}^3_{\mathbf{C}}).$$

Corollary

If F has projective or injective dimension \leq 2 then F is representable.

The first possibly non-trivial obstruction is for n = 1 and it only depends on *F*.

$$\kappa_3(F) \in \operatorname{Ext}^{3,-1}_{\mathbf{C}}(F,F).$$
 $igvee$ definit

Proposition (Naturality, BKS'04)

Given a morphism $\tau \colon F \to G$ in $Mod_{\alpha}(\mathbf{C})$,

$$au \circ \kappa_3(F) = \kappa_3(G) \circ au \in \operatorname{Ext}^{3,| au|-1}_{\mathbf{C}}(F,G).$$

This means that κ_3 is a class in Hochschild–Mitchell cohomology,

$$\kappa_3 \in H^{0,-1}(\mathsf{Mod}_{\alpha}(\mathbf{C}),\mathsf{Ext}^3_{\mathbf{C}}).$$

Corollary If F has projective or injective dimension \leq 2 then F is representable.

The first possibly non-trivial obstruction is for n = 1 and it only depends on *F*.

$$\kappa_3(F) \in \operatorname{Ext}^{3,-1}_{\mathbf{C}}(F,F).$$
 definit

Proposition (Naturality, BKS'04)

Given a morphism $\tau \colon F \to G$ in $Mod_{\alpha}(\mathbf{C})$,

$$au \circ \kappa_3(F) = \kappa_3(G) \circ au \in \operatorname{Ext}_{\mathbf{C}}^{3,| au|-1}(F,G).$$

This means that κ_3 is a class in Hochschild–Mitchell cohomology,

$$\kappa_3 \in H^{0,-1}(\mathsf{Mod}_{\alpha}(\mathbf{C}),\mathsf{Ext}^3_{\mathbf{C}}).$$

Corollary

If F has projective or injective dimension \leq 2 then F is representable.

Definition (Beligiannis'00)

The α -pure global dimension of **T** is

$$\alpha$$
 -p. gl. dim T = $\sup_{X \text{ in } T} p. d. T(-, X)_{|C}$.

Corollary If α -p.gl. dim **T** \leq 2 then [ARO] holds.

ヘロト ヘアト ヘビト ヘビト

Definition (Beligiannis'00)

The α -pure global dimension of **T** is

$$\alpha$$
 -p. gl. dim T = $\sup_{X \text{ in } T} p. d. T(-, X)_{|C}$.

Corollary

If α -p. gl. dim **T** \leq 2 then [ARO] holds.

ヘロト ヘアト ヘビト ヘビト

Theorem

Given n-truncated Postnikov resolutions of $F, G: \mathbb{C}^{op} \to Ab$ and a morphism τ between its (n-1)-truncations, there is an obstruction

$$\theta_n(\tau) \in \operatorname{Ext}^{n,1-n}_{\mathbf{C}}(F,G)$$

which vanishes iff τ can be extended to a morphism between the given *n*-truncated Postnikov resolutions.

Moreover, there is an effective and transitive action of $\operatorname{Ext}_{C}^{n,1-n}(F,F)$ on the set of isomorphism classes of n-truncated Postnikov resolutions of F with the same given (n - 1)-truncation. The difference between two such n-truncated Postnikov resolutions is the obstruction to the realization of the identity in the common (n - 1)-truncation.

ヘロン ヘアン ヘビン ヘビン

Theorem

Given n-truncated Postnikov resolutions of $F, G: \mathbb{C}^{op} \to Ab$ and a morphism τ between its (n-1)-truncations, there is an obstruction

$$\theta_n(\tau) \in \operatorname{Ext}^{n,1-n}_{\mathbf{C}}(F,G)$$

which vanishes iff τ can be extended to a morphism between the given *n*-truncated Postnikov resolutions.

Moreover, there is an effective and transitive action of $\operatorname{Ext}_{\mathbf{C}}^{n,1-n}(F,F)$ on the set of isomorphism classes of n-truncated Postnikov resolutions of F with the same given (n-1)-truncation. The difference between two such n-truncated Postnikov resolutions is the obstruction to the realization of the identity in the common (n-1)-truncation.

ヘロア ヘビア ヘビア・

The first obstruction for τ : $T(-, X)_{|C} \rightarrow T(-, Y)_{|C}$ is for n = 2 and only depends on X and Y,

$$heta_2^{X,Y}(au)\in \mathsf{Ext}^{2,-1}_{\mathbf{C}}(\mathbf{T}(-,X)_{|\mathbf{C}},\mathbf{T}(-,Y)_{|\mathbf{C}}).$$
 \bullet definition

Proposition (*Derivation*)

Given composable morphism $\mathbf{T}(-,X)_{|\mathbf{C}} \xrightarrow{\tau} \mathbf{T}(-,Y)_{|\mathbf{C}} \xrightarrow{\sigma} \mathbf{T}(-,Z)_{|\mathbf{C}}$

$$\theta_2^{X,Z}(\sigma \circ \tau) = \theta_2^{Y,Z}(\sigma) \circ \tau + (-1)^{|\sigma|} \sigma \circ \theta_2^{X,Y}(\tau).$$

This means that, if $\mathbf{Y} \subset \text{Mod}_{\alpha}(\mathbf{C})$ is the full graded subcategory spanned by the objects $\mathbf{T}(-, X)_{|\mathbf{C}}$, then θ_2 represents a class in Hochschild–Mitchell cohomology,

$$\theta_2 \in H^{1,-1}(\mathbf{Y}, \operatorname{Ext}^2_{\mathbf{C}}).$$

Corollary α -p. gl. dim T \leq 1 *iff* [ARO] *and* [ARM] *hold.*

The first obstruction for τ : $T(-, X)_{|C} \rightarrow T(-, Y)_{|C}$ is for n = 2 and only depends on X and Y,

$$heta_2^{X,Y}(au)\in \operatorname{Ext}^{2,-1}_{\mathbf{C}}(\mathbf{T}(-,X)_{|\mathbf{C}},\mathbf{T}(-,Y)_{|\mathbf{C}}).$$
 (definition)

Proposition (Derivation)

Given composable morphism $T(-, X)_{|C} \xrightarrow{\tau} T(-, Y)_{|C} \xrightarrow{\sigma} T(-, Z)_{|C}$

$$heta_2^{X,Z}(\sigma\circ au)= heta_2^{Y,Z}(\sigma)\circ au+(-1)^{|\sigma|}\sigma\circ heta_2^{X,Y}(au).$$

This means that, if $\mathbf{Y} \subset \text{Mod}_{\alpha}(\mathbf{C})$ is the full graded subcategory spanned by the objects $\mathbf{T}(-, X)_{|\mathbf{C}}$, then θ_2 represents a class in Hochschild–Mitchell cohomology,

 $\theta_2 \in H^{1,-1}(\mathbf{Y}, \mathsf{Ext}^2_{\mathbf{C}}).$

Corollary α -p. gl. dim T \leq 1 *iff* [ARO] *and* [ARM] *hold*.

The first obstruction for τ : $T(-, X)_{|C} \rightarrow T(-, Y)_{|C}$ is for n = 2 and only depends on X and Y,

$$heta_2^{X,Y}(au)\in \operatorname{Ext}^{2,-1}_{\mathbf{C}}(\mathbf{T}(-,X)_{|\mathbf{C}},\mathbf{T}(-,Y)_{|\mathbf{C}}).$$
 (definition)

Proposition (Derivation)

Given composable morphism $T(-, X)_{|C} \xrightarrow{\tau} T(-, Y)_{|C} \xrightarrow{\sigma} T(-, Z)_{|C}$

$$\theta_2^{X,Z}(\sigma \circ \tau) = \theta_2^{Y,Z}(\sigma) \circ \tau + (-1)^{|\sigma|} \sigma \circ \theta_2^{X,Y}(\tau).$$

This means that, if $\mathbf{Y} \subset \text{Mod}_{\alpha}(\mathbf{C})$ is the full graded subcategory spanned by the objects $\mathbf{T}(-, X)_{|\mathbf{C}}$, then θ_2 represents a class in Hochschild–Mitchell cohomology,

$$\theta_2 \in H^{1,-1}(\mathbf{Y}, \mathsf{Ext}^2_{\mathbf{C}}).$$

Corollary

 α -p. gl. dim T \leq 1 *iff* [ARO] *and* [ARM] *hold.*

The first obstruction for τ : $T(-, X)_{|C} \rightarrow T(-, Y)_{|C}$ is for n = 2 and only depends on X and Y,

$$heta_2^{X,Y}(au)\in \operatorname{Ext}^{2,-1}_{\mathbf C}(\mathbf T(-,X)_{|\mathbf C},\mathbf T(-,Y)_{|\mathbf C}).$$
 (definition)

Proposition (Derivation)

Given composable morphism $T(-, X)_{|C} \xrightarrow{\tau} T(-, Y)_{|C} \xrightarrow{\sigma} T(-, Z)_{|C}$

$$\theta_2^{X,Z}(\sigma \circ \tau) = \theta_2^{Y,Z}(\sigma) \circ \tau + (-1)^{|\sigma|} \sigma \circ \theta_2^{X,Y}(\tau).$$

This means that, if $\mathbf{Y} \subset \text{Mod}_{\alpha}(\mathbf{C})$ is the full graded subcategory spanned by the objects $\mathbf{T}(-, X)_{|\mathbf{C}}$, then θ_2 represents a class in Hochschild–Mitchell cohomology,

$$\theta_2 \in H^{1,-1}(\mathbf{Y}, \mathsf{Ext}^2_{\mathbf{C}}).$$

Corollary

 α -p. gl. dim T \leq 1 *iff* [ARO] *and* [ARM] *hold.*

Counterexamples to Rosický's theorem

Proposition (Christensen–Keller–Neeman'01 for $\alpha = \aleph_0$)

If R is an α -coherent ring, $\mathbf{T} = D(R)$ and $\mathbf{C} = \alpha$ -compact complexes, then for any $F : \mathbf{C}^{\text{op}} \to \mathbf{Ab}$ in $\text{Mod}_{\alpha}(\mathbf{C})$

 α -p. gl. dim **T** $\geq \alpha$ -p. gl. dim *R*.

 α -Purity in a the category of *R*-modules is the homological algebra arising from pretending that *R*-modules with $< \alpha$ generators and relations are projective.

Theorem

[Braun–Göbel'10] α -pure global dim $\mathbb{Z} > 1$ for any $\alpha > \aleph_0$. [Bazzoni–Šťovíček'11] α -pure global dim $\mathbb{C}[x, y] > 1$ for any α .

Corollary

ヘロン 不通 とくほ とくほ とう

Counterexamples to Rosický's theorem

Proposition (Christensen–Keller–Neeman'01 for $\alpha = \aleph_0$)

If R is an α -coherent ring, $\mathbf{T} = D(R)$ and $\mathbf{C} = \alpha$ -compact complexes, then for any $F : \mathbf{C}^{\text{op}} \to \mathbf{Ab}$ in $\text{Mod}_{\alpha}(\mathbf{C})$

 α -p. gl. dim **T** $\geq \alpha$ -p. gl. dim *R*.

 α -Purity in a the category of *R*-modules is the homological algebra arising from pretending that *R*-modules with $< \alpha$ generators and relations are projective.

Theorem

[Braun–Göbel'10] α -pure global dim $\mathbb{Z} > 1$ for any $\alpha > \aleph_0$. [Bazzoni–Šťovíček'11] α -pure global dim $\mathbb{C}[x, y] > 1$ for any α .

Corollary Rosický's theorem is false for $D(\mathbb{Z})$ and $D(\mathbb{C}[x, y])$.

ъ

Counterexamples to Rosický's theorem

Proposition (Christensen–Keller–Neeman'01 for $\alpha = \aleph_0$)

If R is an α -coherent ring, $\mathbf{T} = D(R)$ and $\mathbf{C} = \alpha$ -compact complexes, then for any $F : \mathbf{C}^{\text{op}} \to \mathbf{Ab}$ in $\text{Mod}_{\alpha}(\mathbf{C})$

 α -p. gl. dim **T** $\geq \alpha$ -p. gl. dim *R*.

 α -Purity in a the category of *R*-modules is the homological algebra arising from pretending that *R*-modules with $< \alpha$ generators and relations are projective.

Theorem

[Braun–Göbel'10] α -pure global dim $\mathbb{Z} > 1$ for any $\alpha > \aleph_0$. [Bazzoni–Šťovíček'11] α -pure global dim $\mathbb{C}[x, y] > 1$ for any α .

Corollary

Rosický's theorem is false for $D(\mathbb{Z})$ *and* $D(\mathbb{C}[x, y])$ *.*

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Transfinite Adams' representability for objects

Corollary

More precisely:

- [ARM] does not hold for $D(\mathbb{Z})$ and $\alpha > \aleph_0$.
- [ARM] does not hold for $D(\mathbb{C}[x, y])$ and any α .

Question (Transfinite [ARO])

If **T** is a well generated triangulated category and **C** denotes the category of α -compact objects, is it true that for big enough regular cardinals α any cohomological functor $H: \mathbf{C}^{\text{op}} \to \mathbf{Ab}$ is of the form $H \cong \mathbf{T}(-, X)_{|\mathbf{C}}$ for some object X in **T**?

・ロト ・ 日本・ ・ 日本・

Transfinite Adams' representability for objects

Corollary

More precisely:

- [ARM] does not hold for $D(\mathbb{Z})$ and $\alpha > \aleph_0$.
- [ARM] does not hold for $D(\mathbb{C}[x, y])$ and any α .

Question (Transfinite [ARO])

If **T** is a well generated triangulated category and **C** denotes the category of α -compact objects, is it true that for big enough regular cardinals α any cohomological functor $H: \mathbf{C}^{op} \to \mathbf{Ab}$ is of the form $H \cong \mathbf{T}(-, X)_{|\mathbf{C}}$ for some object X in **T**?

ヘロト ヘ戸ト ヘヨト ヘヨト

ℵ₁-Adams' representability for objects

Proposition

If the cardinal of the category **C** of \aleph_1 -compact objects is $\leq \aleph_1$ then any cohomological functor $H \colon \mathbf{C}^{\mathrm{op}} \to \mathbf{Ab}$ is $H \cong \mathbf{T}(-, X)_{|\mathbf{C}}$.

Example

Provided $2^{\aleph_0} = \aleph_1$ (continuum hypothesis):

- D(R) if card $R \leq \aleph_1$, e.g. $\mathbb{C}[x, y]$.
- Stable homotopy category.
- $K(\operatorname{Proj}(R))$ if card $R \leq \aleph_1$.
- D(Sh(M)) if M is a connected open manifold.

If $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_1} = \aleph_2$:

 The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(rings of card ≤ ℵ₁).

ヘロン ヘアン ヘビン ヘビン

If the cardinal of the category **C** of \aleph_1 -compact objects is $\leq \aleph_1$ then any cohomological functor $H: \mathbf{C}^{\mathrm{op}} \to \mathbf{Ab}$ is $H \cong \mathbf{T}(-, X)_{|\mathbf{C}}$.

Example Provided $2^{\aleph_0} = \aleph_1$ (continuum hypothesis):

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

If the cardinal of the category **C** of \aleph_1 -compact objects is $\leq \aleph_1$ then any cohomological functor $H: \mathbf{C}^{\mathrm{op}} \to \mathbf{Ab}$ is $H \cong \mathbf{T}(-, X)_{|\mathbf{C}}$.

Example

Provided $2^{\aleph_0} = \aleph_1$ (continuum hypothesis):

- D(R) if card $R \leq \aleph_1$, e.g. $\mathbb{C}[x, y]$.
- Stable homotopy category.
- $K(\operatorname{Proj}(R))$ if card $R \leq \aleph_1$.
- *D*(Sh(*M*)) *if M is a connected open manifold.*

If $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_1} = \aleph_2$:

 The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(rings of card ≤ ℵ₁).

ヘロア ヘビア ヘビア・

If the cardinal of the category **C** of \aleph_1 -compact objects is $\leq \aleph_1$ then any cohomological functor $H: \mathbf{C}^{\mathrm{op}} \to \mathbf{Ab}$ is $H \cong \mathbf{T}(-, X)_{|\mathbf{C}}$.

Example

Provided $2^{\aleph_0} = \aleph_1$ (continuum hypothesis):

- D(R) if card $R \leq \aleph_1$, e.g. $\mathbb{C}[x, y]$.
- Stable homotopy category.
- $K(\operatorname{Proj}(R))$ if card $R \leq \aleph_1$.
- *D*(Sh(*M*)) *if M is a connected open manifold.*

If $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_1} = \aleph_2$:

 The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(rings of card ≤ ℵ₁).

ヘロア ヘビア ヘビア・

If the cardinal of the category **C** of \aleph_1 -compact objects is $\leq \aleph_1$ then any cohomological functor $H: \mathbf{C}^{\mathrm{op}} \to \mathbf{Ab}$ is $H \cong \mathbf{T}(-, X)_{|\mathbf{C}}$.

Example

Provided $2^{\aleph_0} = \aleph_1$ (continuum hypothesis):

- D(R) if card $R \leq \aleph_1$, e.g. $\mathbb{C}[x, y]$.
- Stable homotopy category.
- $K(\operatorname{Proj}(R))$ if card $R \leq \aleph_1$.
- *D*(Sh(*M*)) *if M is a connected open manifold.*

If $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_1} = \aleph_2$:

The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(rings of card ≤ ℵ₁).

ヘロア ヘビア ヘビア・

If the cardinal of the category **C** of \aleph_1 -compact objects is $\leq \aleph_1$ then any cohomological functor $H: \mathbf{C}^{\mathrm{op}} \to \mathbf{Ab}$ is $H \cong \mathbf{T}(-, X)_{|\mathbf{C}}$.

Example

Provided $2^{\aleph_0} = \aleph_1$ (continuum hypothesis):

- D(R) if card $R \leq \aleph_1$, e.g. $\mathbb{C}[x, y]$.
- Stable homotopy category.
- $K(\operatorname{Proj}(R))$ if card $R \leq \aleph_1$.
- D(Sh(M)) if M is a connected open manifold.

If $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_1} = \aleph_2$:

The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(rings of card ≤ ℵ₁).

くロト (過) (目) (日)

If the cardinal of the category **C** of \aleph_1 -compact objects is $\leq \aleph_1$ then any cohomological functor $H: \mathbf{C}^{\mathrm{op}} \to \mathbf{Ab}$ is $H \cong \mathbf{T}(-, X)_{|\mathbf{C}}$.

Example

Provided $2^{\aleph_0} = \aleph_1$ (continuum hypothesis):

- D(R) if card $R \leq \aleph_1$, e.g. $\mathbb{C}[x, y]$.
- Stable homotopy category.
- $K(\operatorname{Proj}(R))$ if card $R \leq \aleph_1$.
- D(Sh(M)) if M is a connected open manifold.

If $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_1} = \aleph_2$:

 The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(rings of card ≤ ℵ₁).

くロト (過) (目) (日)

If the cardinal of the category \mathbf{C} of \aleph_1 -compact objects is $\leq \aleph_1$ then any cohomological functor $H \colon \mathbf{C}^{\mathrm{op}} \to \mathbf{Ab}$ is $H \cong \mathbf{T}(-, X)_{|\mathbf{C}}$.

Example

Provided $2^{\aleph_0} = \aleph_1$ (continuum hypothesis):

- D(R) if card $R \leq \aleph_1$, e.g. $\mathbb{C}[x, y]$.
- Stable homotopy category.
- $K(\operatorname{Proj}(R))$ if card $R \leq \aleph_1$.
- *D*(Sh(*M*)) *if M is a connected open manifold.*

If $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_1} = \aleph_2$:

noetherian scheme with a cover by Spec(rings of card $\leq \aleph_1$).

ヘロト ヘ戸ト ヘヨト ヘヨト

э

If the cardinal of the category **C** of \aleph_1 -compact objects is $\leq \aleph_1$ then any cohomological functor $H: \mathbf{C}^{op} \to \mathbf{Ab}$ is $H \cong \mathbf{T}(-, X)_{|\mathbf{C}}$.

Example

Provided $2^{\aleph_0} = \aleph_1$ (continuum hypothesis):

- D(R) if card $R \leq \aleph_1$, e.g. $\mathbb{C}[x, y]$.
- Stable homotopy category.
- $K(\operatorname{Proj}(R))$ if card $R \leq \aleph_1$.
- *D*(Sh(*M*)) *if M is a connected open manifold.*

If $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_1} = \aleph_2$:

 The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(rings of card ≤ ℵ₁).

イロト イポト イヨト イヨト 三日

If the cardinal of the category \mathbf{C} of \aleph_1 -compact objects is $\leq \aleph_1$ then any cohomological functor $H \colon \mathbf{C}^{\mathrm{op}} \to \mathbf{Ab}$ is $H \cong \mathbf{T}(-, X)_{|\mathbf{C}}$.

Example

Provided $2^{\aleph_0} = \aleph_1$ (continuum hypothesis):

- D(R) if card $R \leq \aleph_1$, e.g. $\mathbb{C}[x, y]$.
- Stable homotopy category.
- $K(\operatorname{Proj}(R))$ if card $R \leq \aleph_1$.
- *D*(Sh(*M*)) *if M is a connected open manifold.*

If $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_1} = \aleph_2$:

 The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(rings of card ≤ ℵ₁).

イロト イポト イヨト イヨト 三日

If the cardinal of the category \mathbf{C} of \aleph_1 -compact objects is $\leq \aleph_1$ then any cohomological functor $H \colon \mathbf{C}^{\mathrm{op}} \to \mathbf{Ab}$ is $H \cong \mathbf{T}(-, X)_{|\mathbf{C}}$.

Example

Provided $2^{\aleph_0} = \aleph_1$ (continuum hypothesis):

- D(R) if card $R \leq \aleph_1$, e.g. $\mathbb{C}[x, y]$.
- Stable homotopy category.
- $K(\operatorname{Proj}(R))$ if card $R \leq \aleph_1$.
- *D*(Sh(*M*)) *if M is a connected open manifold.*

If $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_1} = \aleph_2$:

 The stable motivic homotopy category over a finite-dimensional noetherian scheme with a cover by Spec(rings of card ≤ ℵ₁).

イロト 不得 とくほ とくほ とうほ

What are the obstructions to the representability of an object *F* in $Mod_{\alpha}(\mathbf{C})$ fitting into an extension as follows?

$$\mathbf{T}(-, Y)_{|\mathbf{C}} \stackrel{i}{\rightarrowtail} F \stackrel{p}{\twoheadrightarrow} \mathbf{T}(-, X)_{|\mathbf{C}}.$$

It represents an element in $\operatorname{Ext}_{\mathbf{C}}^{1,0}(\mathbf{T}(-,X)_{|\mathbf{C}},\mathbf{T}(-,Y)_{|\mathbf{C}}).$

There is a conditionally convergent Adams spectral sequence [Christensen'98]

$$E_2^{p,q} = \operatorname{Ext}_{\mathbf{C}}^{p,q}(\mathbf{T}(-,X)_{|\mathbf{C}},\mathbf{T}(-,Y)_{|\mathbf{C}}) \Longrightarrow \mathbf{T}(X,\Sigma^{p+q}Y).$$

Theorem

The first obstruction satisfies the following formula

$$\kappa_3(F) = i \circ d_2(S(Y)
ightarrow F woheadrightarrow S(X)) \circ p \in \operatorname{Ext}^{3,-1}_{\mathbf{C}}(F,F).$$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

What are the obstructions to the representability of an object *F* in $Mod_{\alpha}(\mathbf{C})$ fitting into an extension as follows?

$$\mathbf{T}(-, Y)_{|\mathbf{C}} \stackrel{i}{\rightarrowtail} F \stackrel{p}{\twoheadrightarrow} \mathbf{T}(-, X)_{|\mathbf{C}}$$

It represents an element in $\operatorname{Ext}_{\mathbf{C}}^{1,0}(\mathbf{T}(-,X)_{|\mathbf{C}},\mathbf{T}(-,Y)_{|\mathbf{C}})$.

There is a conditionally convergent Adams spectral sequence [Christensen'98]

$$E_2^{p,q} = \operatorname{Ext}_{\mathbf{C}}^{p,q}(\mathbf{T}(-,X)_{|\mathbf{C}},\mathbf{T}(-,Y)_{|\mathbf{C}}) \Longrightarrow \mathbf{T}(X,\Sigma^{p+q}Y).$$

Theorem

The first obstruction satisfies the following formula

$$\kappa_3(F) = i \circ d_2(S(Y)
ightarrow F \twoheadrightarrow S(X)) \circ p \in \operatorname{Ext}^{3,-1}_{\mathbf{C}}(F,F).$$

・ロット (雪) () () () ()

What are the obstructions to the representability of an object *F* in $Mod_{\alpha}(\mathbf{C})$ fitting into an extension as follows?

$$\mathbf{T}(-, Y)_{|\mathbf{C}} \stackrel{i}{\rightarrowtail} F \stackrel{p}{\twoheadrightarrow} \mathbf{T}(-, X)_{|\mathbf{C}}.$$

It represents an element in $\operatorname{Ext}_{\mathbf{C}}^{1,0}(\mathbf{T}(-,X)_{|\mathbf{C}},\mathbf{T}(-,Y)_{|\mathbf{C}}).$

There is a conditionally convergent Adams spectral sequence [Christensen'98]

$$E_2^{p,q} = \mathsf{Ext}^{p,q}_{\mathbf{C}}(\mathbf{T}(-,X)_{|\mathbf{C}},\mathbf{T}(-,Y)_{|\mathbf{C}}) \Longrightarrow \mathbf{T}(X,\Sigma^{p+q}Y).$$

Theorem

The first obstruction satisfies the following formula

$$\kappa_3(F) = i \circ d_2(S(Y)
ightarrow F \twoheadrightarrow S(X)) \circ p \in \operatorname{Ext}^{3,-1}_{\mathbf{C}}(F,F).$$

ヘロト ヘ戸ト ヘヨト ヘヨト

What are the obstructions to the representability of an object *F* in $Mod_{\alpha}(\mathbf{C})$ fitting into an extension as follows?

$$\mathbf{T}(-, Y)_{|\mathbf{C}} \stackrel{i}{\rightarrowtail} F \stackrel{p}{\twoheadrightarrow} \mathbf{T}(-, X)_{|\mathbf{C}}.$$

It represents an element in $\operatorname{Ext}_{\mathbf{C}}^{1,0}(\mathbf{T}(-,X)_{|\mathbf{C}},\mathbf{T}(-,Y)_{|\mathbf{C}}).$

There is a conditionally convergent Adams spectral sequence [Christensen'98]

$$E_2^{p,q} = \mathsf{Ext}^{p,q}_{\mathbf{C}}(\mathbf{T}(-,X)_{|\mathbf{C}},\mathbf{T}(-,Y)_{|\mathbf{C}}) \Longrightarrow \mathbf{T}(X,\Sigma^{p+q}Y).$$

Theorem

The first obstruction satisfies the following formula

$$\kappa_3({\mathcal F})={\it i}\circ d_2({\mathcal S}({\mathcal Y})
ightarrow {\mathcal F}\twoheadrightarrow {\mathcal S}({\mathcal X}))\circ {\it p}\in {\operatorname{Ext}}^{3,-1}_{{f C}}({\mathcal F},{\mathcal F}).$$

・ロット (雪) () () () ()

ъ

Corollary (Christensen–Keller–Neeman'01 for $\alpha = \aleph_0$)

If *R* is a hereditary ring, $\mathbf{T} = D(R)$ and **C** is the category of α -compact complexes, the following statements are equivalent:

- Any cohomological functor H: C^{op} → Ab is H ≅ T(−, X)_{|C}.
- *α*-p. gl. dim *R* ≤ 2.

Question (Transfinite [ARO] for D(R) with R hereditary)

Is there any hereditary ring *R* with α -pure projective dimension > 2 for $\alpha > \aleph_0$?

Otherwise, for any *R*-module *M* the kernel of

induced by inclusions: $\bigoplus_{N \subset M} N \longrightarrow M$

 $N \alpha$ -generated

would be a direct summand of some $\bigoplus_{i \in I} P_i$ with $P_i \alpha$ -generated.

Corollary (Christensen–Keller–Neeman'01 for $\alpha = \aleph_0$)

If *R* is a hereditary ring, $\mathbf{T} = D(R)$ and **C** is the category of α -compact complexes, the following statements are equivalent:

- Any cohomological functor H: C^{op} → Ab is H ≅ T(−, X)_{|C}.
- *α*-p. gl. dim *R* ≤ 2.

Question (Transfinite [ARO] for D(R) with R hereditary) Is there any hereditary ring R with α -pure projective dimension > 2 for $\alpha > \aleph_0$?

Otherwise, for any *R*-module *M* the kernel of

nduced by inclusions: $\bigoplus N \longrightarrow M$

 $N \subseteq M$ $N \alpha$ -generated

would be a direct summand of some $\bigoplus_{i \in I} P_i$ with $P_i \alpha$ -generated.

Corollary (Christensen–Keller–Neeman'01 for $\alpha = \aleph_0$)

If *R* is a hereditary ring, $\mathbf{T} = D(R)$ and **C** is the category of α -compact complexes, the following statements are equivalent:

- Any cohomological functor H: C^{op} → Ab is H ≅ T(−, X)_{|C}.
- *α*-p. gl. dim *R* ≤ 2.

Question (Transfinite [ARO] for D(R) with R hereditary)

Is there any hereditary ring *R* with α -pure projective dimension > 2 for $\alpha > \aleph_0$?

Otherwise, for any *R*-module *M* the kernel of

induced by inclusions: $\bigoplus_{\substack{N \subset M \\ N \; \alpha \text{-generated}}} N \longrightarrow M$

would be a direct summand of some $\bigoplus_{i \in I} P_i$ with $P_i \alpha$ -generated.

Obstructions to Adams representability

Fernando Muro

Universidad de Sevilla

(based on joint work with O. Raventos, from U. Barcelona)

Triangulated categories and applications Banff, June 12–17, 2011

・ 聞 と く ヨ と く ヨ と …

æ

We can regard **T** as a graded category with graded morphism sets

$$\mathbf{T}^*(X,Y) = \bigoplus_{n \in \mathbb{Z}} \mathbf{T}(X,\Sigma^n Y).$$

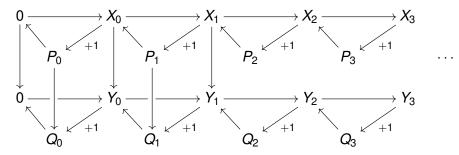
Since **C** is closed under Σ and Σ^{-1} , the suspension functor extends to an exact equivalence

$$\Sigma \colon \operatorname{\mathsf{Mod}}_{\alpha}(\mathbf{C}) \overset{\sim}{\longrightarrow} \operatorname{\mathsf{Mod}}_{\alpha}(\mathbf{C})$$

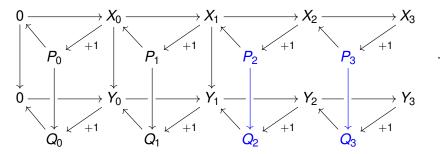
which induces a graded abelian category structure in ${\rm Mod}_{\alpha}({\bf C})$ in the same way.

✓ back

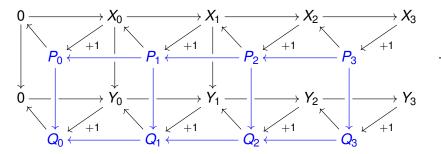
Given $\tau : \mathbf{T}(-, X)_{|\mathbf{C}} \to \mathbf{T}(-, Y)_{|\mathbf{C}}$, extend it to a 1-truncated morphism between good Postnikov resolutions of $\mathbf{T}(-, X)_{|\mathbf{C}}$ and $\mathbf{T}(-, Y)_{|\mathbf{C}}$



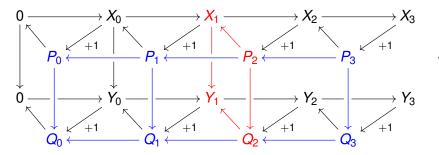
Given $\tau : \mathbf{T}(-, X)_{|\mathbf{C}} \to \mathbf{T}(-, Y)_{|\mathbf{C}}$, extend it to a 1-truncated morphism between good Postnikov resolutions of $\mathbf{T}(-, X)_{|\mathbf{C}}$ and $\mathbf{T}(-, Y)_{|\mathbf{C}}$



Given $\tau : \mathbf{T}(-, X)_{|\mathbf{C}} \to \mathbf{T}(-, Y)_{|\mathbf{C}}$, extend it to a 1-truncated morphism between good Postnikov resolutions of $\mathbf{T}(-, X)_{|\mathbf{C}}$ and $\mathbf{T}(-, Y)_{|\mathbf{C}}$



Given $\tau : \mathbf{T}(-, X)_{|\mathbf{C}} \to \mathbf{T}(-, Y)_{|\mathbf{C}}$, extend it to a 1-truncated morphism between good Postnikov resolutions of $\mathbf{T}(-, X)_{|\mathbf{C}}$ and $\mathbf{T}(-, Y)_{|\mathbf{C}}$



Need not commute!

Given $\tau : \mathbf{T}(-, X)_{|\mathbf{C}} \to \mathbf{T}(-, Y)_{|\mathbf{C}}$, extend it to a 1-truncated morphism between good Postnikov resolutions of $\mathbf{T}(-, X)_{|\mathbf{C}}$ and $\mathbf{T}(-, Y)_{|\mathbf{C}}$



Need not commute! The lack of commutativity of the red square is measured by a morphism

$$P_2 \xrightarrow{-1}$$
 hocolim $Y_n = Y$

which represents $\theta_2^{X,Y}(\tau) \in \operatorname{Ext}_{\mathbf{C}}^{2,-1}(\mathbf{T}(-,X)_{|\mathbf{C}},\mathbf{T}(-,Y)_{|\mathbf{C}})$.

Given $F: \mathbf{C}^{op} \to \mathbf{Ab}$ in $Mod_{\alpha}(\mathbf{C})$ take a projective resolution

$$\cdots \leftarrow 0 \longleftarrow P_0 \xleftarrow{d_1} P_1 \xleftarrow{d_2} P_2 \xleftarrow{d_3} P_3 \leftarrow \cdots$$

and complete d_1 to an exact triangle

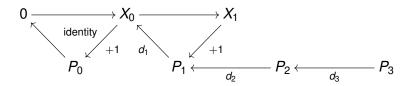
・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Given $F: \mathbf{C}^{op} \to \mathbf{Ab}$ in $Mod_{\alpha}(\mathbf{C})$ take a projective resolution

$$\cdots \leftarrow 0 \longleftarrow P_0 \xleftarrow{d_1} P_1 \xleftarrow{d_2} P_2 \xleftarrow{d_3} P_3 \leftarrow \cdots$$

and complete d_1 to an exact triangle

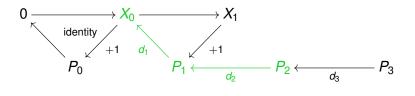


直 とう かい うちょう

Given $F: \mathbf{C}^{op} \to \mathbf{Ab}$ in $Mod_{\alpha}(\mathbf{C})$ take a projective resolution

$$\cdots \leftarrow 0 \longleftarrow P_0 \xleftarrow{d_1} P_1 \xleftarrow{d_2} P_2 \xleftarrow{d_3} P_3 \leftarrow \cdots$$

and complete d_1 to an exact triangle

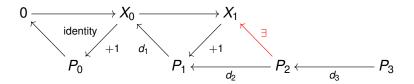


伺 とくき とくき とうき

Given $F: \mathbf{C}^{op} \to \mathbf{Ab}$ in $Mod_{\alpha}(\mathbf{C})$ take a projective resolution

$$\cdots \leftarrow 0 \longleftarrow P_0 \xleftarrow{d_1} P_1 \xleftarrow{d_2} P_2 \xleftarrow{d_3} P_3 \leftarrow \cdots$$

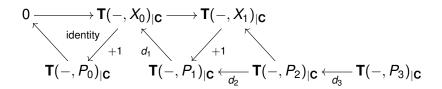
and complete d_1 to an exact triangle



Given $F: \mathbf{C}^{op} \to \mathbf{Ab}$ in $Mod_{\alpha}(\mathbf{C})$ take a projective resolution

$$\cdots \leftarrow 0 \longleftarrow P_0 \xleftarrow{d_1} P_1 \xleftarrow{d_2} P_2 \xleftarrow{d_3} P_3 \leftarrow \cdots$$

and complete d_1 to an exact triangle

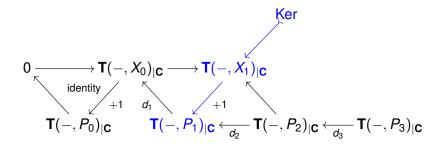


< 回 > < 回 > < 回 > … 回

Given $F: \mathbf{C}^{op} \to \mathbf{Ab}$ in $Mod_{\alpha}(\mathbf{C})$ take a projective resolution

$$\cdots \leftarrow 0 \longleftarrow P_0 \xleftarrow{d_1} P_1 \xleftarrow{d_2} P_2 \xleftarrow{d_3} P_3 \leftarrow \cdots$$

and complete d_1 to an exact triangle

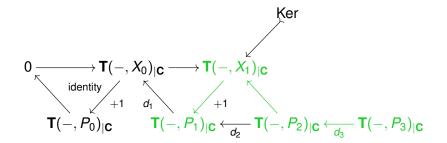


▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Given $F: \mathbf{C}^{op} \to \mathbf{Ab}$ in $Mod_{\alpha}(\mathbf{C})$ take a projective resolution

$$\cdots \leftarrow 0 \longleftarrow P_0 \xleftarrow{d_1} P_1 \xleftarrow{d_2} P_2 \xleftarrow{d_3} P_3 \leftarrow \cdots$$

and complete d_1 to an exact triangle

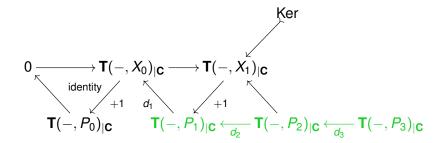


(個) (ヨ) (ヨ) (ヨ)

Given $F: \mathbf{C}^{op} \to \mathbf{Ab}$ in $Mod_{\alpha}(\mathbf{C})$ take a projective resolution

$$\cdots \leftarrow 0 \longleftarrow P_0 \xleftarrow{d_1} P_1 \xleftarrow{d_2} P_2 \xleftarrow{d_3} P_3 \leftarrow \cdots$$

and complete d_1 to an exact triangle

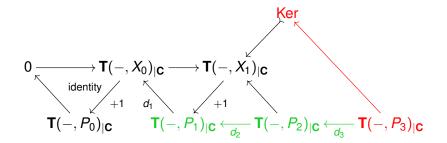


(個) (ヨ) (ヨ) (ヨ)

Given $F: \mathbf{C}^{op} \to \mathbf{Ab}$ in $Mod_{\alpha}(\mathbf{C})$ take a projective resolution

$$\cdots \leftarrow 0 \longleftarrow P_0 \xleftarrow{d_1} P_1 \xleftarrow{d_2} P_2 \xleftarrow{d_3} P_3 \leftarrow \cdots$$

and complete d_1 to an exact triangle

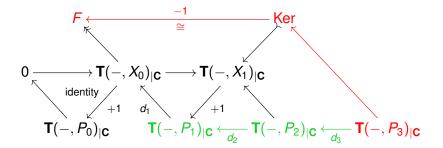


・ 同 ト ・ ヨ ト ・ ヨ ト

Given $F: \mathbf{C}^{op} \to \mathbf{Ab}$ in $Mod_{\alpha}(\mathbf{C})$ take a projective resolution

$$\cdots \leftarrow 0 \longleftarrow P_0 \xleftarrow{d_1} P_1 \xleftarrow{d_2} P_2 \xleftarrow{d_3} P_3 \leftarrow \cdots$$

and complete d_1 to an exact triangle



The red composite represents $\kappa_3(F) \in \operatorname{Ext}^{3,-1}_{\mathbf{C}}(F,F)$.