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Adams’ representability theorem

Let T be the stable homotopy category and C the full subcategory of
compact spectra.

Definition
A cohomological functor H : Cop → Ab is an additive functor which
takes exact triangles to exact sequences.

Example
For any X in T the restricted representable functor
T(−,X )|C : Cop → Ab is cohomological.

Theorem (Adams’ representability theorem, 1971)
[ARO] Any cohomological functor H : Cop → Ab is of the form

H ∼= T(−,X )|C for some X in T.

[ARM] Any natural transformation T(−,X )|C → T(−,Y )|C is
induced by a morphism f : X → Y in T.
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Adams’ representability theorem

Theorem (Christensen’98)
Given two objects X and Y in T, there is a short exact sequence where
the kernel is the set of phantom maps,

lim1

C→X
C compact

T(ΣC,Y ) � T(X ,Y ) � lim
C→X

C compact

T(C,Y )

Definition
A morphism f : X → Y in T is a phantom map if T(C, f ) = 0 for any C
in C.

Theorem (Neeman’97, Christensen–Strickland’98)
Phantom maps form a square zero ideal in T.
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The stable homotopy category as an extension [CS’98]

Let Mod(C) be the abelian category of C-modules, i.e. additive
functors Cop → Ab.

Homological functors are the flat objects in Mod(C).

The restricted Yoneda functor

T −→ Mod(C),

X 7→ T(−,X )|C,

is, by Adams’ representability theorem, full and essentially surjective
onto the full subcategory Flat(C) of flat objects.

The subset of fantom maps in T(X ,Y ) is naturally isomorphic to
Ext1C(T(−,X )|C,T(−,Y )|C), and there is a square-zero extension

Ext1C � T � Flat(C),

which is classified by a Hochschild–Mitchell cohomology class

{Ext1C � T � Flat(C)} ∈ H2(Flat(C),Ext1C).

Fernando Muro Obstructions to Adams representability



The stable homotopy category as an extension [CS’98]

Let Mod(C) be the abelian category of C-modules, i.e. additive
functors Cop → Ab.

Homological functors are the flat objects in Mod(C).

The restricted Yoneda functor

T −→ Mod(C),

X 7→ T(−,X )|C,

is, by Adams’ representability theorem, full and essentially surjective
onto the full subcategory Flat(C) of flat objects.

The subset of fantom maps in T(X ,Y ) is naturally isomorphic to
Ext1C(T(−,X )|C,T(−,Y )|C), and there is a square-zero extension

Ext1C � T � Flat(C),

which is classified by a Hochschild–Mitchell cohomology class

{Ext1C � T � Flat(C)} ∈ H2(Flat(C),Ext1C).

Fernando Muro Obstructions to Adams representability



The stable homotopy category as an extension [CS’98]

Let Mod(C) be the abelian category of C-modules, i.e. additive
functors Cop → Ab.

Homological functors are the flat objects in Mod(C).

The restricted Yoneda functor

T −→ Mod(C),

X 7→ T(−,X )|C,

is, by Adams’ representability theorem, full and essentially surjective
onto the full subcategory Flat(C) of flat objects.

The subset of fantom maps in T(X ,Y ) is naturally isomorphic to
Ext1C(T(−,X )|C,T(−,Y )|C), and there is a square-zero extension

Ext1C � T � Flat(C),

which is classified by a Hochschild–Mitchell cohomology class

{Ext1C � T � Flat(C)} ∈ H2(Flat(C),Ext1C).

Fernando Muro Obstructions to Adams representability



The stable homotopy category as an extension [CS’98]

Let Mod(C) be the abelian category of C-modules, i.e. additive
functors Cop → Ab.

Homological functors are the flat objects in Mod(C).

The restricted Yoneda functor

T −→ Mod(C),

X 7→ T(−,X )|C,

is, by Adams’ representability theorem, full and essentially surjective
onto the full subcategory Flat(C) of flat objects.

The subset of fantom maps in T(X ,Y ) is naturally isomorphic to
Ext1C(T(−,X )|C,T(−,Y )|C), and there is a square-zero extension

Ext1C � T � Flat(C),

which is classified by a Hochschild–Mitchell cohomology class

{Ext1C � T � Flat(C)} ∈ H2(Flat(C),Ext1C).

Fernando Muro Obstructions to Adams representability



The Adams representability problem

Can we generalize Adam’s theorem to other categories?

If T is a compactly generated triangulated category we can take the
subcategory C of compact objects, i.e. objects C in T such that

T

(
C,
∐
i∈I

Xi

)
=
∐
i∈I

T(C,Xi).

Theorem (Neeman’97)
If C is countable then Adams’ representability theorem holds.

Example
Stable homotopy category.
D(R) if R is a countable ring, e.g. Z.
The stable motivic homotopy category over a finite-dimensional
noetherian scheme with a cover by Spec(countable rings)
[Voevodsky’98, Naumann–Spitzweck’09].
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The Adams representability problem

Theorem (Christensen–Keller–Neeman’01)
If k is a field of card k ≥ ℵ2 then D(k〈x , y〉) does not satisfy Adams’
representability theorem, neither [ARM] nor [ARO].

Can we generalize Adam’s theorem in another direction?

Let T be a well generated triangulated category and α a regular
cardinal.

Recall that α = ℵ0 is a regular cardinal because any finite sum of finite
cardinals is finite. In general, replace ‘finite’ with ‘< α’.

Let C be the full subcategory of α-compact objects. An object C in C
satisfies

T

(
C,
∐
i∈I

Xi

)
= colim

J⊂I
#J<α

T

C,
∐
j∈J

Xj

 .
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The Adams representability problem

Definition
A cohomological functor H : Cop → Ab is an additive functor which
takes exact triangles to exact sequences, and if card I < α then

H

(∐
i∈I

Ci

)
=
∏
i∈I

H(Ci).

Example
For any X in T the restricted representable functor
T(−,X )|C : Cop → Ab is cohomological.
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The Adams representability problem

Failed theorem (Rosicky’05)
If T is a well generated triangulated category with models then for big
enough regular cardinals α the following holds:

[ARO] Any cohomological functor H : Cop → Ab is of the form
H ∼= T(−,X )|C for some X in T.

[ARM] Any natural transformation T(−,X )|C → T(−,Y )|C is
induced by a morphism f : X → Y in T.

If Rosický’s theorem were true for T, in addition to the obvious
extensions of the previous results we would have:

Theorem (Brown representability for the dual, Neeman’09)
Any product-preserving functor F : T→ Ab taking exact triangles to
exact sequences is representable F ∼= T(X ,−).
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Basic setting
T = a well generated triangulated category with translation functor Σ.

α = a regular cardinal.

C = a full essentially small subcategory of T closed under Σ, Σ−1,

and
∐

of < α objects, and such that C generates T.

Modα(C) = the graded abelian category of α-continuous C-modules,
i.e. functors F : Cop → Ab such that, if card I < α, then

F

(∐
i∈I

Ci

)
=
∏
i∈I

F (Ci). grading

The restricted Yoneda functor

T −→ Modα(C),

X 7→ T(−,X )|C,

which induces an equivalence between the completion of C in T by
coproducts and direct summands and projective objects in Modα(C).
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Postnikov resolutions

Definition (Benson–Krause–Schwede’04)
A Postnikov resolution of F : Cop → Ab in Modα(C) is a diagram of
exact triangles in T

0 // X0

+1
��

// X1

+1
��

// X2

+1
��

// X3

+1
��

· · ·

P0

[[

P1

\\

P2

\\

P3

\\

such that the induced complex

· · · ← 0←− P0 ←− P1 ←− P2 ←− P3 ← · · ·

is a projective resolution of F .
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Postnikov resolutions

Definition
A morphism of Postnikov resolutions is a commutative diagram in T

0 //

��

X0

+1zz

//

��

X1

+1zz

//

��

X2

+1zz

//

��

X3

+1zz

��

P0

\\

��

P1

^^

��

P2

^^

��

P3

^^

��

· · ·

0 // Y0

+1zz

// Y1

+1zz

// Y2

+1zz

// Y3

+1zz

Q0

\\

Q1

^^

Q2

^^

Q3

^^
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Postnikov resolutions

Proposition
Given a Postnikov resolution of F : Cop → Ab

0 // X0

+1
��

// X1

+1
��

// X2

+1
��

// X3

+1
��

· · ·

P0

[[

P1

\\

P2

\\

P3

\\

we have a ‘natural’ isomorphism
F ∼= T(−,hocolim Xn)|C.

In [BKS’04] when C consists of compact objects.
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Postnikov resolutions

Proposition
Given X in T, any projective resolution of F = T(−,X )|C can be
completed to a Postnikov resolution, called good, such that
hocolim Xn = X.
A morphism f : X → Y can be extended to a morphism between
any two good Postnikov resolutions of T(−,X )|C and T(−,Y )|C
inducing f on homotopy colimits.

Corollary
A functor F : Cop → Ab is of the form H ∼= T(−,X )|C iff it admits a
Postnikov resolution.
A natural transformation T(−,X )|C → T(−,Y )|C is induced by a
morphism f : X → Y iff it can be extended to a morphism between
good Postnikov resolutions of T(−,X )|C and T(−,Y )|C.
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Postnikov resolutions

Definition
A homotopy between two morphisms of Postnikov resolutions is a
sequence of morphisms Pn → Qn+1, n ≥ 0,

0 //

����

X0

+1zz

//

����

X1

+1zz

//

����

X2

+1zz

//

����

X3

+1zz

����

P0

\\

���� ""

P1

^^

���� ""

P2

^^

���� ""

P3

^^

����

· · ·

0 // Y0

+1zz

// Y1

+1zz

// Y2

+1zz

// Y3

+1zz

Q0

\\

Q1

^^

Q2

^^

Q3

^^

which define a homotopy between the corresponding morphisms of
projective resolutions in Modα(C), and such that the difference
between the blue arrows is the pink composite.
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Truncated Postnikov resolutions

Definition
An n-truncated Postnikov resolution of F : Cop → Ab in Modα(C)
consists of a diagram of n exact triangles in T with a tail

0 // X0

+1
q0

��

// X1

+1
q1

��

· · ·

Xn−2 // Xn−1

+1

qn−1

~~

P0

f0

[[

P1

f1
\\

Pn−1

fn−1
``

Pn

fn
^^

and a projective resolution of F

P0 oo
+1

q0f1
P1 oo

+1

q1f2
· · · · · · oo +1

qn−2fn−1
Pn−1 oo

+1

qn−1fn
Pn oo

+1

dn+1
Pn+1 oo

+1

dn+2
· · · · · ·

such that fndn+1= 0. Morphisms of truncated Postnikov resolutions
and homotopies between them are defined in the ‘obvious’ way.
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Obstructions to lifting Postnikov resolutions

Theorem (Benson–Krause–Schwede’04)
Given an n-truncated Postnikov resolution of F : Cop → Ab, there is an
obstruction

κn+2 ∈ Extn+2,−n
C (F ,F )

which vanishes iff it can be extended to an (n + 1)-truncated Postnikov
resolution.
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Obstructions to lifting Postnikov resolutions

The first possibly non-trivial obstruction is for n = 1 and it only
depends on F .

κ3(F ) ∈ Ext3,−1
C (F ,F ). definition

Proposition (Naturality, BKS’04)
Given a morphism τ : F → G in Modα(C),

τ ◦ κ3(F ) = κ3(G) ◦ τ ∈ Ext3,|τ |−1
C (F ,G).

This means that κ3 is a class in Hochschild–Mitchell cohomology,

κ3 ∈ H0,−1(Modα(C),Ext3C).

Corollary
If F has projective or injective dimension ≤ 2 then F is representable.
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Obstructions to lifting Postnikov resolutions

Definition (Beligiannis’00)
The α-pure global dimension of T is

α -p.gl.dim T = sup
X in T

p.d.T(−,X )|C.

Corollary
If α -p.gl.dim T ≤ 2 then [ARO] holds.
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Obstructions to lifting morphisms

Theorem
Given n-truncated Postnikov resolutions of F ,G : Cop → Ab and a
morphism τ between its (n − 1)-truncations, there is an obstruction

θn(τ) ∈ Extn,1−n
C (F ,G)

which vanishes iff τ can be extended to a morphism between the given
n-truncated Postnikov resolutions.

Moreover, there is an effective and transitive action of Extn,1−n
C (F ,F )

on the set of isomorphism classes of n-truncated Postnikov resolutions
of F with the same given (n − 1)-truncation. The difference between
two such n-truncated Postnikov resolutions is the obstruction to the
realization of the identity in the common (n − 1)-truncation.
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Obstructions to lifting morphisms

The first obstruction for τ : T(−,X )|C → T(−,Y )|C is for n = 2 and only
depends on X and Y ,

θX ,Y
2 (τ) ∈ Ext2,−1

C (T(−,X )|C,T(−,Y )|C). definition

Proposition (Derivation)

Given composable morphism T(−,X )|C
τ−→ T(−,Y )|C

σ−→ T(−,Z )|C

θX ,Z
2 (σ ◦ τ) = θY ,Z

2 (σ) ◦ τ + (−1)|σ|σ ◦ θX ,Y
2 (τ).

This means that, if Y ⊂ Modα(C) is the full graded subcategory
spanned by the objects T(−,X )|C, then θ2 represents a class in
Hochschild–Mitchell cohomology,

θ2 ∈ H1,−1(Y,Ext2C).

Corollary
α -p.gl.dim T ≤ 1 iff [ARO] and [ARM] hold.

Fernando Muro Obstructions to Adams representability



Obstructions to lifting morphisms

The first obstruction for τ : T(−,X )|C → T(−,Y )|C is for n = 2 and only
depends on X and Y ,

θX ,Y
2 (τ) ∈ Ext2,−1

C (T(−,X )|C,T(−,Y )|C). definition

Proposition (Derivation)

Given composable morphism T(−,X )|C
τ−→ T(−,Y )|C

σ−→ T(−,Z )|C

θX ,Z
2 (σ ◦ τ) = θY ,Z

2 (σ) ◦ τ + (−1)|σ|σ ◦ θX ,Y
2 (τ).

This means that, if Y ⊂ Modα(C) is the full graded subcategory
spanned by the objects T(−,X )|C, then θ2 represents a class in
Hochschild–Mitchell cohomology,

θ2 ∈ H1,−1(Y,Ext2C).

Corollary
α -p.gl.dim T ≤ 1 iff [ARO] and [ARM] hold.

Fernando Muro Obstructions to Adams representability



Obstructions to lifting morphisms

The first obstruction for τ : T(−,X )|C → T(−,Y )|C is for n = 2 and only
depends on X and Y ,

θX ,Y
2 (τ) ∈ Ext2,−1

C (T(−,X )|C,T(−,Y )|C). definition

Proposition (Derivation)

Given composable morphism T(−,X )|C
τ−→ T(−,Y )|C

σ−→ T(−,Z )|C

θX ,Z
2 (σ ◦ τ) = θY ,Z

2 (σ) ◦ τ + (−1)|σ|σ ◦ θX ,Y
2 (τ).

This means that, if Y ⊂ Modα(C) is the full graded subcategory
spanned by the objects T(−,X )|C, then θ2 represents a class in
Hochschild–Mitchell cohomology,

θ2 ∈ H1,−1(Y,Ext2C).

Corollary
α -p.gl.dim T ≤ 1 iff [ARO] and [ARM] hold.

Fernando Muro Obstructions to Adams representability



Obstructions to lifting morphisms

The first obstruction for τ : T(−,X )|C → T(−,Y )|C is for n = 2 and only
depends on X and Y ,

θX ,Y
2 (τ) ∈ Ext2,−1

C (T(−,X )|C,T(−,Y )|C). definition

Proposition (Derivation)

Given composable morphism T(−,X )|C
τ−→ T(−,Y )|C

σ−→ T(−,Z )|C

θX ,Z
2 (σ ◦ τ) = θY ,Z

2 (σ) ◦ τ + (−1)|σ|σ ◦ θX ,Y
2 (τ).

This means that, if Y ⊂ Modα(C) is the full graded subcategory
spanned by the objects T(−,X )|C, then θ2 represents a class in
Hochschild–Mitchell cohomology,

θ2 ∈ H1,−1(Y,Ext2C).

Corollary
α -p.gl.dim T ≤ 1 iff [ARO] and [ARM] hold.

Fernando Muro Obstructions to Adams representability



Counterexamples to Rosický’s theorem

Proposition (Christensen–Keller–Neeman’01 for α = ℵ0)
If R is an α-coherent ring, T = D(R) and C = α-compact complexes,
then for any F : Cop → Ab in Modα(C)

α -p.gl.dim T ≥ α -p.gl.dim R.

α-Purity in a the category of R-modules is the homological algebra
arising from pretending that R-modules with < α generators and
relations are projective.

Theorem
[Braun–Göbel’10] α -pure global dimZ > 1 for any α > ℵ0.
[Bazzoni–Št’ovíček’11] α -pure global dimC[x , y ] > 1 for any α.

Corollary
Rosický’s theorem is false for D(Z) and D(C[x , y ]).
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Transfinite Adams’ representability for objects

Corollary
More precisely:

[ARM] does not hold for D(Z) and α > ℵ0.
[ARM] does not hold for D(C[x , y ]) and any α.

Question (Transfinite [ARO])
If T is a well generated triangulated category and C denotes the
category of α-compact objects, is it true that for big enough regular
cardinals α any cohomological functor H : Cop → Ab is of the form
H ∼= T(−,X )|C for some object X in T?
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ℵ1-Adams’ representability for objects

Proposition
If the cardinal of the category C of ℵ1-compact objects is ≤ ℵ1 then
any cohomological functor H : Cop → Ab is H ∼= T(−,X )|C.

Example
Provided 2ℵ0 = ℵ1 (continuum hypothesis):

D(R) if card R ≤ ℵ1, e.g. C[x , y ].
Stable homotopy category.
K (Proj(R)) if card R ≤ ℵ1.
D(Sh(M)) if M is a connected open manifold.

If 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2:
The stable motivic homotopy category over a finite-dimensional
noetherian scheme with a cover by Spec(rings of card ≤ ℵ1).

Fernando Muro Obstructions to Adams representability



ℵ1-Adams’ representability for objects

Proposition
If the cardinal of the category C of ℵ1-compact objects is ≤ ℵ1 then
any cohomological functor H : Cop → Ab is H ∼= T(−,X )|C.

Example
Provided 2ℵ0 = ℵ1 (continuum hypothesis):

D(R) if card R ≤ ℵ1, e.g. C[x , y ].
Stable homotopy category.
K (Proj(R)) if card R ≤ ℵ1.
D(Sh(M)) if M is a connected open manifold.

If 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2:
The stable motivic homotopy category over a finite-dimensional
noetherian scheme with a cover by Spec(rings of card ≤ ℵ1).

Fernando Muro Obstructions to Adams representability



ℵ1-Adams’ representability for objects

Proposition
If the cardinal of the category C of ℵ1-compact objects is ≤ ℵ1 then
any cohomological functor H : Cop → Ab is H ∼= T(−,X )|C.

Example
Provided 2ℵ0 = ℵ1 (continuum hypothesis):

D(R) if card R ≤ ℵ1, e.g. C[x , y ].
Stable homotopy category.
K (Proj(R)) if card R ≤ ℵ1.
D(Sh(M)) if M is a connected open manifold.

If 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2:
The stable motivic homotopy category over a finite-dimensional
noetherian scheme with a cover by Spec(rings of card ≤ ℵ1).

Fernando Muro Obstructions to Adams representability



ℵ1-Adams’ representability for objects

Proposition
If the cardinal of the category C of ℵ1-compact objects is ≤ ℵ1 then
any cohomological functor H : Cop → Ab is H ∼= T(−,X )|C.

Example
Provided 2ℵ0 = ℵ1 (continuum hypothesis):

D(R) if card R ≤ ℵ1, e.g. C[x , y ].
Stable homotopy category.
K (Proj(R)) if card R ≤ ℵ1.
D(Sh(M)) if M is a connected open manifold.

If 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2:
The stable motivic homotopy category over a finite-dimensional
noetherian scheme with a cover by Spec(rings of card ≤ ℵ1).

Fernando Muro Obstructions to Adams representability



ℵ1-Adams’ representability for objects

Proposition
If the cardinal of the category C of ℵ1-compact objects is ≤ ℵ1 then
any cohomological functor H : Cop → Ab is H ∼= T(−,X )|C.

Example
Provided 2ℵ0 = ℵ1 (continuum hypothesis):

D(R) if card R ≤ ℵ1, e.g. C[x , y ].
Stable homotopy category.
K (Proj(R)) if card R ≤ ℵ1.
D(Sh(M)) if M is a connected open manifold.

If 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2:
The stable motivic homotopy category over a finite-dimensional
noetherian scheme with a cover by Spec(rings of card ≤ ℵ1).

Fernando Muro Obstructions to Adams representability



ℵ1-Adams’ representability for objects

Proposition
If the cardinal of the category C of ℵ1-compact objects is ≤ ℵ1 then
any cohomological functor H : Cop → Ab is H ∼= T(−,X )|C.

Example
Provided 2ℵ0 = ℵ1 (continuum hypothesis):

D(R) if card R ≤ ℵ1, e.g. C[x , y ].
Stable homotopy category.
K (Proj(R)) if card R ≤ ℵ1.
D(Sh(M)) if M is a connected open manifold.

If 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2:
The stable motivic homotopy category over a finite-dimensional
noetherian scheme with a cover by Spec(rings of card ≤ ℵ1).

Fernando Muro Obstructions to Adams representability



ℵ1-Adams’ representability for objects

Proposition
If the cardinal of the category C of ℵ1-compact objects is ≤ ℵ1 then
any cohomological functor H : Cop → Ab is H ∼= T(−,X )|C.

Example
Provided 2ℵ0 = ℵ1 (continuum hypothesis):

D(R) if card R ≤ ℵ1, e.g. C[x , y ].
Stable homotopy category.
K (Proj(R)) if card R ≤ ℵ1.
D(Sh(M)) if M is a connected open manifold.

If 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2:
The stable motivic homotopy category over a finite-dimensional
noetherian scheme with a cover by Spec(rings of card ≤ ℵ1).

Fernando Muro Obstructions to Adams representability



ℵ1-Adams’ representability for objects

Proposition
If the cardinal of the category C of ℵ1-compact objects is ≤ ℵ1 then
any cohomological functor H : Cop → Ab is H ∼= T(−,X )|C.

Example
Provided 2ℵ0 = ℵ1 (continuum hypothesis):

D(R) if card R ≤ ℵ1, e.g. C[x , y ].
Stable homotopy category.
K (Proj(R)) if card R ≤ ℵ1.
D(Sh(M)) if M is a connected open manifold.

If 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2:
The stable motivic homotopy category over a finite-dimensional
noetherian scheme with a cover by Spec(rings of card ≤ ℵ1).

Fernando Muro Obstructions to Adams representability



ℵ1-Adams’ representability for objects

Proposition
If the cardinal of the category C of ℵ1-compact objects is ≤ ℵ1 then
any cohomological functor H : Cop → Ab is H ∼= T(−,X )|C.

Example
Provided 2ℵ0 = ℵ1 (continuum hypothesis):

D(R) if card R ≤ ℵ1, e.g. C[x , y ].
Stable homotopy category.
K (Proj(R)) if card R ≤ ℵ1.
D(Sh(M)) if M is a connected open manifold.

If 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2:
The stable motivic homotopy category over a finite-dimensional
noetherian scheme with a cover by Spec(rings of card ≤ ℵ1).

Fernando Muro Obstructions to Adams representability



ℵ1-Adams’ representability for objects

Proposition
If the cardinal of the category C of ℵ1-compact objects is ≤ ℵ1 then
any cohomological functor H : Cop → Ab is H ∼= T(−,X )|C.

Example
Provided 2ℵ0 = ℵ1 (continuum hypothesis):

D(R) if card R ≤ ℵ1, e.g. C[x , y ].
Stable homotopy category.
K (Proj(R)) if card R ≤ ℵ1.
D(Sh(M)) if M is a connected open manifold.

If 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2:
The stable motivic homotopy category over a finite-dimensional
noetherian scheme with a cover by Spec(rings of card ≤ ℵ1).

Fernando Muro Obstructions to Adams representability



ℵ1-Adams’ representability for objects

Proposition
If the cardinal of the category C of ℵ1-compact objects is ≤ ℵ1 then
any cohomological functor H : Cop → Ab is H ∼= T(−,X )|C.

Example
Provided 2ℵ0 = ℵ1 (continuum hypothesis):

D(R) if card R ≤ ℵ1, e.g. C[x , y ].
Stable homotopy category.
K (Proj(R)) if card R ≤ ℵ1.
D(Sh(M)) if M is a connected open manifold.

If 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2:
The stable motivic homotopy category over a finite-dimensional
noetherian scheme with a cover by Spec(rings of card ≤ ℵ1).

Fernando Muro Obstructions to Adams representability



Transfinite Adams’ representability for objects

What are the obstructions to the representability of an object F in
Modα(C) fitting into an extension as follows?

T(−,Y )|C
i
� F

p
� T(−,X )|C.

It represents an element in Ext1,0C (T(−,X )|C,T(−,Y )|C).

There is a conditionally convergent Adams spectral sequence
[Christensen’98]

Ep,q
2 = Extp,qC (T(−,X )|C,T(−,Y )|C) =⇒ T(X ,Σp+qY ).

Theorem
The first obstruction satisfies the following formula

κ3(F ) = i ◦ d2(S(Y ) � F � S(X )) ◦ p ∈ Ext3,−1
C (F ,F ).
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Transfinite Adams’ representability for objects

Corollary (Christensen–Keller–Neeman’01 for α = ℵ0)
If R is a hereditary ring, T = D(R) and C is the category of α-compact
complexes, the following statements are equivalent:

Any cohomological functor H : Cop → Ab is H ∼= T(−,X )|C.
α -p.gl.dim R ≤ 2.

Question (Transfinite [ARO] for D(R) with R hereditary)
Is there any hereditary ring R with α-pure projective dimension > 2
for α > ℵ0?

Otherwise, for any R-module M the kernel of

induced by inclusions:
⊕

N⊂M
N α-generated

N // // M

would be a direct summand of some
⊕
i∈I

Pi with Pi α-generated.
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Grading

We can regard T as a graded category with graded morphism sets

T∗(X ,Y ) =
⊕
n∈Z

T(X ,ΣnY ).

Since C is closed under Σ and Σ−1, the suspension functor extends to
an exact equivalence

Σ: Modα(C)
∼−→ Modα(C)

which induces a graded abelian category structure in Modα(C) in the
same way.

back
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Definition of the first obstruction θ2(τ)

Given τ : T(−,X )|C → T(−,Y )|C, extend it to a 1-truncated morphism
between good Postnikov resolutions of T(−,X )|C and T(−,Y )|C

0 //

��

X0

+1zz

//

��

X1

+1zz

//

��

X2

+1zz

// X3

+1zz

P0

\\

��

P1

^^

��

P2

^^

P3

^^

· · ·

0 // Y0

+1zz

// Y1

+1zz

// Y2

+1zz

// Y3

+1zz

Q0

\\

Q1

^^

Q2

^^

Q3

^^
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Need not commute!
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Need not commute! The lack of commutativity of the red square is
measured by a morphism

P2
−1−→ hocolim Yn = Y

which represents θX ,Y
2 (τ) ∈ Ext2,−1

C (T(−,X )|C,T(−,Y )|C). back
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Definition of the first obstruction κ3(F )

Given F : Cop → Ab in Modα(C) take a projective resolution

· · · ← 0←− P0
d1←− P1

d2←− P2
d3←− P3 ← · · ·

and complete d1 to an exact triangle
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Given F : Cop → Ab in Modα(C) take a projective resolution

· · · ← 0←− P0
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d3←− P3 ← · · ·

and complete d1 to an exact triangle

F oo ∼=
−1 Ker��

��

0 // T(−,X0)|C //

____

+1
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The red composite represents κ3(F ) ∈ Ext3,−1
C (F ,F ). back
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