MINIMAL MODELS FOR OPERADIC ALGEBRAS OVER ARBITRARY RINGS

Colloque 2016 du GDR 2875 Topologie Algébrique et Applications Amiens, 12–14 October 2016

Fernando Muro

Universidad de Sevilla

Differential graded algebras in topology

A **DIFFERENTIAL GRADED ALGEBRA (DGA)** *A* is a chain complex equipped with a binary associative product satisfying the Leibniz rule

$$d(a \cdot b) = d(a) \cdot b + (-1)^{|a|} a \cdot d(b).$$

Its **HOMOLOGY** $H_*(A)$ is a graded algebra.

Differential forms on a manifold $\Omega^*(M) \rightarrow H^*_{DR}(M)$ Singular cochains on a space $C^*(X,k) \rightarrow H^*(X,k)$ Singular chains on a top. group $C_*(G,k) \rightarrow H_*(G,k)$ Sullivan's model of a space $A^*_{PL}(X) \rightarrow H^*(X,\mathbb{Q})$

. . .

k commutative ground ring.

A differential graded algebra.

 $H_*(A)$ homology graded algebra.

Can we recover A from $H_*(A)$?

Theorem (Kadeishvili'80)

If $H_*(A)$ is **PROJECTIVE**, then it can be endowed with a minimal A_{∞} -algebra structure which allows to recover A up to quasi-isomorphism.

A_{∞} -algebras

An A_{∞} -Algebra is a \mathbb{Z} -graded module X endowed with degree n-2 operations, $n \ge 1$,

 $m_n\colon X\otimes \stackrel{n}{\cdots}\otimes X\longrightarrow X$

satisfying the following equations, $n \ge 1$,

$$\sum_{\substack{p+q=n+1\\1\leq i\leq p}} \pm m_p \circ_i m_q = 0,$$

- \bigcirc *m*₁ is a differential for *X*, *m*₁² = 0,
- \bigcirc *m*₁ satisfies the Leibniz rule w.r.t. *a* · *b* = *m*₂(*a*, *b*),
- *m*₂ is associative up to the chain homotopy *m*₃,
 ...

MINIMAL if $m_1 = 0$. DGAs are A_{∞} -algebras with $m_n = 0$, n > 2.

∞-morphisms

An ∞ -morphism of A_{∞} -algebras $f: X \dashrightarrow Y$ is a sequence of degree n - 1 maps, $n \ge 1$,

 $f_n\colon X\otimes \stackrel{n}{\cdots} \otimes X \longrightarrow Y$

satisfying the following equations, $n \ge 1$,

$$\sum_{\substack{p+q=n+1\\1\leq i\leq p}} \pm f_p \circ_i m_q^X = \sum_{i_1+\dots+i_r=n} \pm m_r^Y(f_{i_1},\dots,f_{i_r}),$$

∫ f₁: X → Y is a map of complexes,
∫ f₁ is multiplicative w.r.t. m₂ up to the chain homotopy f₂,
...

It is an ∞ -QUASI-ISOMORPHISM if f_1 is a quasi-isomorphism, and a (STRICT) MORPHISM of A_∞ -algebras when $f_n = 0, n > 1$.

Kadeishvili defined inductively an ∞-quasi-isomorphism

 $f: H_*(A) \xrightarrow{\sim} A.$

There is a Quillen equivalence between model categories

 A_{∞} -algebras \rightleftharpoons DGAs [Hinich'97]

whose weak equivalences are quasi-isomorphisms, and ∞ -morphisms with projective source represent maps in

Ho(A_{∞} -algebras).

Kontsevich–Soibelman's formulas

We can obtain the A_{∞} -algebra structure on $H_*(A)$ and the ∞ -quasi-isomorphism $f: H_*(A) \dashrightarrow A$ from an SDR

$$H_*(A) \underset{p}{\stackrel{i}{\rightleftharpoons}} A \ \mathcal{O}_h$$

 \bigcirc pi = 1,

$$\bigcirc$$
 h chain homotopy for *ip* \simeq 1,

0 ...

Kontsevich–Soibelman's formulas

We can obtain the A_{∞} -algebra structure on $H_*(A)$ and the ∞ -quasi-isomorphism $f: H_*(A) \dashrightarrow A$ from an SDR

$$H_*(A) \underset{p}{\stackrel{i}{\rightleftharpoons}} A \ \mathcal{O}_h$$

$$\bigcirc pi = 1,$$

$$\bigcirc$$
 h chain homotopy for *ip* \simeq 1,

Ο...

Generalizations

An **OPERAD** $O = \{O_n\}_{n \ge 0}$ is an algebraic gadget defining a certain kind of algebras. It consists of:

- complexes of $k[\Sigma_n]$ -modules O_n of ARITY *n* operations,
- COMPOSITION LAWS $\circ_i: O_p \otimes O_q \to O_{p+q-1}, 1 \leq i \leq p$,
- an **IDENTITY** operation id $\in O_1$,
- associativity, unit, and equivariance relations.

All previous results extend in the following way:

DGAs
$$\iff$$
 algebras over a quadratic Koszul operad O ,
e.g. $O = \mathcal{A}s, Com, \mathcal{L}ie, \mathcal{P}ois, Gerst, \dots$

 A_{∞} -algebras \longleftrightarrow O_{∞} -algebras, O_{∞} is the minimal resolution of O,e.g. $\mathcal{A}s_{\infty}$ is the operad for A_{∞} -algebras.

We must require technical conditions so that the homotopy theories of operads and their algebras are well defined.

Theorem

Given an *O*-algebra A with $H_*(A)$ **PROJECTIVE**, the homology can be endowed with a minimal O_{∞} -algebra structure with an ∞ -quasiisomorphism $H_*(A) \dashrightarrow A$.

There is a Quillen equivalence between model categories

 O_{∞} -algebras $\rightleftharpoons O$ -algebras

whose weak equivalences are quasi-isomorphisms, and ∞-morphisms with projective source represent maps in

Ho(O_{∞} -algebras).

Removing the projectivity hypothesis

What if $H_*(A)$ is not projective?

Theorem (Sagave'10)

There is a projective resolution of $H_*(A)$ with a minimal derived A_{∞} -algebra structure which allows to recover A up to E^2 -equivalence.

A **derived** A_{∞} -**Algebra** is an (\mathbb{N}, \mathbb{Z}) -bigraded module X such that the **total** graded module Tot(X)

$$\operatorname{Tot}_n(X) = \bigoplus_{p+q=n} X_{p,q}$$

has an A_{∞} -structure compatible with the **VERTICAL FILTRATION**

$$F_m \operatorname{Tot}_n(X) = \bigoplus_{\substack{p+q=n\\p \le m}} X_{p,q}.$$

A **DERIVED** ∞ -**MORPHISM** of derived A_{∞} -algebras $X \dashrightarrow Y$ is an ∞ -morphism $\text{Tot}(X) \dashrightarrow \text{Tot}(Y)$ preserving the vertical filtration, and a (STRICT) MORPHISM is a map preserving the bigrading and all the structure.

- Derived A_{∞} -algebras are also A_{∞} -algebras equipped with a split increasing filtration,
- derived ∞-morphisms are ∞-morphisms preserving the filtration,
- (strict) morphisms $X \to Y$ are filtered (strict) morphisms Tot(X) → Tot(Y) compatible with the splittings.

Derived A_{∞} -algebras

A **derived** A_{∞} **-Algebra** is the same as a bigraded module X equipped with bidegree (-i, n - 2 + i) operations, $n \ge 1, i \ge 0$,

$$m_{i,n}\colon X^{\otimes n}\longrightarrow X$$

satisfying the following equations, $n \ge 1$, $i \ge 0$,

$$\sum_{\substack{p+q=n+1\\1\leq j\leq p\\k+l=i}}\pm m_{k,p}\circ_j m_{l,q}=0,$$

{m_{0,n}}_{n≥1} defines a usual A_∞-algebra,
 {m_{i,1}}_{i≥0} forms a TWISTED COMPLEX,
 ...

We can similarly describe **DERIVED** ∞**-MORPHISMS**.

Twisted complexes

A **TWISTED** COMPLEX is a bigraded module X such that Tot(X) is equipped with a differential compatible with the vertical filtration,

- d_0 is a vertical differential, $d_0^2 = 0$, MINIMAL means $d_0 = 0$, ○ d_0 is a map of vertical complexes (up to signs)
- \bigcirc *d*¹ is a map of vertical complexes (up to signs),
- d_1 squares to zero up to vertical chain homotopy d_2 , $d_1^2 \simeq 0$, ○ ...

A TWISTED MORPHISM of twisted complexes $X \rightarrow Y$ is a map of complexes $Tot(X) \rightarrow Tot(Y)$ preserving the vertical filtration, and a (STRICT) MORPHISM is a map preserving the bigrading and all the d_i .

- twisted complexes are also complexes equipped with a split filtration,
- twisted morphisms are maps preserving the filtration,
- (strict) morphisms are twisted morphisms compatible with the splittings.

Homotopy theory of derived A_{∞} -algebras

Sagave, like Kadeishvili, defined inductively a derived ∞ -morphism inducing an isomorphism on the E^2 -term of the associated spectral sequences,

f: horizontal proj. resolution of $H_*(A) \xrightarrow{\sim} A$.

THEOREM

There is a model structure on the category of derived A_{∞} -algebras with total quasi-isomorphisms as weak equivalences, derived ∞ -morphisms with projective source represent maps in the homotopy category, and there is a zig-zag of Quillen equivalences

derived A_{∞} -algebras $\rightleftharpoons \bullet \leftrightarrows DGAs$.

Homotopy theory of different kinds of complexes

The category of (chain) complexes has a monoidal model structure with quasi-isomorphisms as weak equivalences and surjections as fibrations.

An **Z**-GRADED COMPLEX is a (\mathbb{Z}, \mathbb{Z}) -bigraded module equipped with a VERTICAL differential d_0

They inherit a monoidal model structure from complexes.

Homotopy theory of different kinds of complexes

Modules in graded complexes over the ring of **DUAL NUMBERS** $\mathcal{D} = k[\epsilon]/(\epsilon^2) \cong k \cdot 1 \oplus k \cdot \epsilon, \qquad |\epsilon| = (-1, 0),$

are the same as **BICOMPLEXES** with HORIZONTAL differential

 $d_1(x) = \epsilon \cdot x.$

They also inherit a **VERTICAL** model structure, which restricts to (\mathbb{N}, \mathbb{Z}) -bicomplexes.

Proposition (total model structure)

The vertical model structure on (\mathbb{N}, \mathbb{Z}) -bicomplexes has a left Bousfield localization with **TOTAL** quasi-isomorphisms as weak equivalences. The inclusion on the **VERTICAL AXIS** defines a Quillen equivalence

complexes \rightleftharpoons *bicomplexes.*

Fibrations are surjections which are vertical quasi-isomorphisms in positive dimensions.

Homotopy theory of different kinds of complexes

 ${\cal D}$ is a quadratic Koszul algebra and twisted complexes are the same as ${\cal D}_\infty\text{-modules}.$

Proposition

The category of twisted complexes has a model structure with total quasi-isomorphisms as weak equivalences and fibrations as in the previous slide. We also have Quillen equivalences

complexes \rightleftharpoons *twisted complexes* \rightleftharpoons *bicomplexes.*

Twisted morphisms with projective source represent maps in

Ho(twisted complexes).

A **BIDGA** is a bicomplex with a compatible product. They yield examples of derived A_{∞} -algebras.

Theorem

The category of biDGAs has a model structure with the same weak equivalences and fibrations as in the total model structure for bicomplexes and there is a Quillen equivalence

 $DGAs \rightleftharpoons biDGAs.$

BiDGAs are algebras in graded complexes over an operad

$$d\mathcal{A}s = \mathcal{A}s \circ_{\varphi} \mathcal{D}.$$

Theorem (Livernet–Roitzheim–Whitehouse'13)

dAs is a quadratic Koszul operad of graded complexes and dAs_{∞} is the operad for derived A_{∞} -algebras.

Theorem

The category of derived A_{∞} -algebras has a model structure with the same weak equivalences and fibrations as twisted complexes, derived ∞ -morphisms with projective source represent maps in the homotopy category, and there is a Quillen equivalence

derived A_{∞} -algebras \rightleftharpoons biDGAs.

Proposition

Bicomplexes have yet another monoidal model structure:

- weak equivalences are E²-equivalences,
- fibrations are surjective horizontal quasi-isomorphisms which are also surjective on vertical cycles.

A cofibrant replacement \tilde{X} of a complex X concentrated in the vertical axis is a CARTAN–EILENBERG RESOLUTION. Its vertical homology

$H^v_*(\tilde X)$

is a projective resolution of $H_*(X)$.

There is a hierarchy of model structures on bicomplexes:

Vertical \rightarrow Cartan–Eilenberg \rightarrow Total.

Corollary

BiDGAs inherit a Cartan–Eilenberg model structure from bicomplexes. A DGA.

 \tilde{A} Cartan–Eilenberg cofibrant resolution (biDGA) $\tilde{A} \xrightarrow{\sim} A$.

We can therefore choose an SDR of graded complexes,

$$H^v_*(\tilde{A}) \stackrel{i}{\underset{p}{\rightleftharpoons}} \tilde{A} \ \circlearrowright_h$$

The transferred $d\mathcal{A}s_{\infty}$ -algebra structure on the horizontal projective resolution $H^v_*(\tilde{A})$ of $H_*(A)$ given by Kontsevich–Soibelman's explicit formulas defines a minimal derived A_{∞} -algebra weakly equivalent to \tilde{A} , and hence to A,

$$H^{v}_{*}(\tilde{A}) \xrightarrow{\sim} \tilde{A} \xrightarrow{\sim} A.$$

We can replace $O = \mathcal{A}s$ with any quadratic Koszul operad O.

BI-*O***-ALGEBRAS** are *O***-**algebras in bicomplexes. They coincide with algebras in graded complexes over an operad

 $dO=O\circ_{\varphi}\mathcal{D}.$

DERIVED O_{∞} -ALGEBRAS are bigraded modules *X* such that Tot(*X*) is endowed with an O_{∞} -algebra structure compatible with the vertical filtration.

Theorem (Maes'16)

dO is a quadratic Koszul operad of graded complexes and dO_{∞} is the operad for derived O_{∞} -algebras.

THEOREM

There is a model structure on the category of derived O_{∞} -algebras with total quasi-isomorphisms as weak equivalences, derived ∞ -morphisms with projective source represent maps in the homotopy category, and there is a zig-zag of Quillen equivalences

derived O_{∞} -algebras \rightleftharpoons bi-O-algebras \leftrightarrows O-algebras.

THEOREM

Given an *O*-algebra *A*, there is a projective resolution of $H_*(A)$ with a minimal derived O_{∞} -algebra structure weakly equivalent to *A*.

MINIMAL MODELS FOR OPERADIC ALGEBRAS OVER ARBITRARY RINGS

Colloque 2016 du GDR 2875 Topologie Algébrique et Applications Amiens, 12–14 October 2016

Fernando Muro

Universidad de Sevilla

