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Differential graded algebras in topology

A differential graded algebra (DGA) A is a chain complex
equipped with a binary associative product satisfying the
Leibniz rule

d(a · b) � d(a) · b + (−1) |a|a · d(b).

Its homology H∗(A) is a graded algebra.

Differential forms on a manifold Ω∗(M) ; H
∗

DR
(M)

Singular cochains on a space C∗(X, k) ; H
∗(X, k)

Singular chains on a top. group C∗(G, k) ; H∗(G, k)

Sullivan’s model of a space A∗
PL

(X) ; H
∗(X,Q)

· · ·
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Reconstructing DGAs from their homology

k commutative ground ring.

A differential graded algebra.

H∗(A) homology graded algebra.

Can we recover A from H∗(A)?

Theorem (Kadeishvili’80)

If H∗(A) is projective, then it can be endowed with a minimal A∞-

algebra structure which allows to recover A up to quasi-isomorphism.
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A∞-algebras

An A∞-algebra is a Z-graded module X endowed with degree
n − 2 operations, n ≥ 1,

mn : X⊗ n

· · · ⊗X −→ X

satisfying the following equations, n ≥ 1,∑
p+q�n+1
1≤i≤p

±mp ◦i mq � 0,

# m1 is a differential for X, m2
1 � 0,

# m1 satisfies the Leibniz rule w.r.t. a · b � m2(a, b),
# m2 is associative up to the chain homotopy m3,
# . . .

Minimal if m1 � 0. DGAs are A∞-algebras with mn � 0, n > 2.
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∞-morphisms

An∞-morphism of A∞-algebras f : X d Y is a sequence of
degree n − 1 maps, n ≥ 1,

fn : X⊗ n

· · · ⊗X −→ Y

satisfying the following equations, n ≥ 1,∑
p+q�n+1
1≤i≤p

±fp ◦i m
X

q
�

∑
i1+···+ir�n

±m
Y

r
(fi1 , . . . , fir ),

# f1 : X→ Y is a map of complexes,
# f1 is multiplicative w.r.t. m2 up to the chain homotopy f2,
# . . .

It is an∞-quasi-isomorphism if f1 is a quasi-isomorphism, and a
(strict) morphism of A∞-algebras when fn � 0, n > 1.
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Homotopy theory of A∞-algebras

Kadeishvili defined inductively an∞-quasi-isomorphism

f : H∗(A)
∼

d A.

There is a Quillen equivalence between model categories

A∞-algebras� DGAs [Hinich’97]

whose weak equivalences are quasi-isomorphisms, and
∞-morphisms with projective source represent maps in

Ho(A∞-algebras).
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Kontsevich–Soibelman’s formulas

We can obtain the A∞-algebra structure on H∗(A) and the
∞-quasi-isomorphism f : H∗(A) d A from an SDR

H∗(A)
i

�
p

A	h

# i cycle selection map,
# pi � 1,
# h chain homotopy for ip ' 1,
# . . .

mn �

∑
n leaves

±

i i

µ

h

i

µ
p
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Kontsevich–Soibelman’s formulas

We can obtain the A∞-algebra structure on H∗(A) and the
∞-quasi-isomorphism f : H∗(A) d A from an SDR

H∗(A)
i

�
p

A	h

# i cycle selection map,
# pi � 1,
# h chain homotopy for ip ' 1,
# . . .

fn �

∑
n leaves

±

i i

µ

h

i

µ

h

, f1 � i.
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Generalizations

An operad O � {On}n≥0 is an algebraic gadget defining a certain
kind of algebras. It consists of:

# complexes of k[Σn]-modules On of arity n operations,
# composition laws ◦i : Op ⊗ Oq → Op+q−1, 1 ≤ i ≤ p,
# an identity operation id ∈ O1,
# associativity, unit, and equivariance relations.

a1 a2 a3

output

a1 a2 a3

◦2 =

9



Generalizations

All previous results extend in the following way:

DGAs ! algebras over a quadratic Koszul operad O ,
e.g. O � As, Com,Lie,Pois,Gerst, . . .

A∞-algebras ! O∞-algebras,
O∞ is the minimal resolution of O,
e.g.As∞ is the operad for A∞-algebras.

We must require technical conditions so that the homotopy
theories of operads and their algebras are well defined.
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Generalizations

Theorem

Given an O-algebra A with H∗(A) projective, the homology can

be endowed with a minimal O∞-algebra structure with an∞-quasi-

isomorphism H∗(A) d A.

There is a Quillen equivalence between model categories

O∞-algebras� O-algebras

whose weak equivalences are quasi-isomorphisms, and
∞-morphisms with projective source represent maps in

Ho(O∞-algebras).
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Removing the projectivity hypothesis

What if H∗(A) is not projective?

Theorem (Sagave’10)

There is a projective resolution of H∗(A) with a minimal derived A∞-

algebra structure which allows to recover A up to E
2
-equivalence.

A derived A∞-algebra is an (N,Z)-bigraded module X such
that the total graded module Tot(X)

Totn(X) �
⊕
p+q�n

Xp,q

has an A∞-structure compatible with the vertical filtration

Fm Totn(X) �
⊕
p+q�n

p≤m

Xp,q.
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Derived A∞-algebras

A derived∞-morphism of derived A∞-algebras X d Y is an
∞-morphism Tot(X) d Tot(Y) preserving the vertical filtration,
and a (strict) morphism is a map preserving the bigrading and
all the structure.

# Derived A∞-algebras are also A∞-algebras equipped with a
split increasing filtration,

# derived∞-morphisms are∞-morphisms preserving the
filtration,

# (strict) morphisms X→ Y are filtered (strict) morphisms
Tot(X) → Tot(Y) compatible with the splittings.
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Derived A∞-algebras

A derived A∞-algebra is the same as a bigraded module X
equipped with bidegree (−i, n − 2 + i) operations, n ≥ 1, i ≥ 0,

mi,n : X⊗n −→ X

satisfying the following equations, n ≥ 1, i ≥ 0,∑
p+q�n+1
1≤j≤p
k+l�i

±mk,p ◦j ml,q � 0,

# {m0,n}n≥1 defines a usual A∞-algebra,
# {mi,1}i≥0 forms a twisted complex,
# . . .

We can similarly describe derived∞-morphisms.
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Twisted complexes

A twisted complex is a bigraded module X such that Tot(X) is
equipped with a differential compatible with the vertical
filtration,

d0

d1

d2

d3

d4

# d0 is a vertical differential, d20 � 0, minimal means d0 � 0,
# d1 is a map of vertical complexes (up to signs),
# d1 squares to zero up to vertical chain homotopy d2, d21 ' 0,
# . . .
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Twisted complexes

A twisted morphism of twisted complexes X d Y is a map of
complexes Tot(X) d Tot(Y) preserving the vertical filtration,
and a (strict) morphism is a map preserving the bigrading and
all the di.

# twisted complexes are also complexes equipped with a
split filtration,

# twisted morphisms are maps preserving the filtration,
# (strict) morphisms are twisted morphisms compatible with

the splittings.
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Homotopy theory of derived A∞-algebras

Sagave, like Kadeishvili, defined inductively a derived
∞-morphism inducing an isomorphism on the E2-term of the
associated spectral sequences,

f : horizontal proj. resolution of H∗(A)
∼

d A.

Theorem

There is a model structure on the category of derived A∞-algebras

with total quasi-isomorphisms as weak equivalences, derived ∞-

morphisms with projective source represent maps in the homotopy

category, and there is a zig-zag of Quillen equivalences

derived A∞-algebras� •� DGAs.
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Homotopy theory of different kinds of complexes

The category of (chain) complexes has a monoidal model
structure with quasi-isomorphisms as weak equivalences and
surjections as fibrations.

An Z-graded complex is a (Z,Z)-bigraded module equipped
with a vertical differential d0

...
...

...
...

· · ·

· · ·

· · ·

· · ·

Xp,q

Xp,q−1

Xp−1,q

Xp−1,q−1

d0d0

They inherit a monoidal model structure from complexes.
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Homotopy theory of different kinds of complexes

Modules in graded complexes over the ring of dual numbers

D � k[ε]/(ε2) � k · 1 ⊕ k · ε, |ε | � (−1, 0),

are the same as bicomplexes with horizontal differential

d1(x) � ε · x.

...
...

...
...

· · ·

· · ·

· · ·

· · ·

Xp,q

Xp,q−1

Xp−1,q

Xp−1,q−1

d0d0

d1

d1

They also inherit a verticalmodel structure, which restricts to
(N,Z)-bicomplexes.
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Homotopy theory of different kinds of complexes

Proposition (total model structure)

The vertical model structure on (N,Z)-bicomplexes has a left Bous-

field localization with total quasi-isomorphisms as weak equiva-

lences. The inclusion on the vertical axis defines a Quillen equiv-

alence

complexes� bicomplexes.

Fibrations are surjections which are vertical
quasi-isomorphisms in positive dimensions.
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Homotopy theory of different kinds of complexes

D is a quadratic Koszul algebra and twisted complexes are the
same asD∞-modules.

Proposition

The category of twisted complexes has a model structure with total

quasi-isomorphisms as weak equivalences and fibrations as in the

previous slide. We also have Quillen equivalences

complexes� twisted complexes� bicomplexes.

Twisted morphisms with projective source represent maps in

Ho(twisted complexes).
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Homotopy theory of biDGAs

A biDGA is a bicomplex with a compatible product. They yield
examples of derived A∞-algebras.

Theorem

The category of biDGAs has a model structure with the same weak

equivalences and fibrations as in the total model structure for bicom-

plexes and there is a Quillen equivalence

DGAs� biDGAs.

BiDGAs are algebras in graded complexes over an operad

dAs � As ◦ϕ D .

22



Homotopy theory of biDGAs

Theorem (Livernet–Roitzheim–Whitehouse’13)

dAs is a quadratic Koszul operad of graded complexes and dAs∞ is

the operad for derived A∞-algebras.

Theorem

The category of derived A∞-algebras has a model structure with the

same weak equivalences and fibrations as twisted complexes, derived

∞-morphisms with projective source represent maps in the homotopy

category, and there is a Quillen equivalence

derived A∞-algebras� biDGAs.
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The Cartan–Eilenbert model structure

Proposition

Bicomplexes have yet another monoidal model structure:

# weak equivalences are E
2
-equivalences,

# fibrations are surjective horizontal quasi-isomorphisms which

are also surjective on vertical cycles.

A cofibrant replacement X̃ of a complex X concentrated in the
vertical axis is a Cartan–Eilenberg resolution. Its vertical
homology

H
v

∗ (X̃)

is a projective resolution of H∗(X).
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The Cartan–Eilenbert model structure

There is a hierarchy of model structures on bicomplexes:

Vertical→ Cartan–Eilenberg→ Total.

Corollary

BiDGAs inherit a Cartan–Eilenberg model structure from bicom-

plexes.

25



A homotopical proof of Sagave’s theorem

A DGA.

Ã Cartan–Eilenberg cofibrant resolution (biDGA) Ã
∼

� A.

We can therefore choose an SDR of graded complexes,

H
v

∗ (Ã)
i

�
p

Ã	h

The transferred dAs∞-algebra structure on the horizontal
projective resolution H

v

∗ (Ã) of H∗(A) given by
Kontsevich–Soibelman’s explicit formulas defines a minimal
derived A∞-algebra weakly equivalent to Ã, and hence to A,

H
v

∗ (Ã)
∼

d Ã

∼

� A.
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Generalizations

We can replace O � As with any quadratic Koszul operad O.

Bi-O-algebras are O-algebras in bicomplexes. They coincide
with algebras in graded complexes over an operad

dO � O ◦ϕ D .

Derived O∞-algebras are bigraded modules X such that Tot(X)
is endowed with an O∞-algebra structure compatible with the
vertical filtration.

Theorem (Maes’16)

dO is a quadratic Koszul operad of graded complexes and dO∞ is the

operad for derived O∞-algebras.
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Generalizations

Theorem

There is a model structure on the category of derived O∞-algebras

with total quasi-isomorphisms as weak equivalences, derived ∞-

morphisms with projective source represent maps in the homotopy

category, and there is a zig-zag of Quillen equivalences

derived O∞-algebras� bi-O-algebras� O-algebras.

Theorem

Given an O-algebra A, there is a projective resolution of H∗(A) with
a minimal derived O∞-algebra structure weakly equivalent to A.
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