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Main theorem

Theorem (Jasso–M.’22)
Let 𝑘 be a perfect field and 𝑑 ≥ 1. There is a bijection between
equivalence classes of pairs:

1. (T, 𝑐)where:
a) T a small algebraic triangulated category with

finite-dimensional Hom’s and split idempotents.
b) 𝑐 a basic 𝑑ℤ-cluster tilting object.

2. (Λ, [𝜎])where:
a) Λ a basic finite-dimensional self-injective twisted

(𝑑 + 2)-periodic algebra.
b) [𝜎] ∈ Out(Λ) such thatΩ𝑑+2

Λ𝑒 (Λ) ≅ 1Λ𝜎 in mod(Λ𝑒).

The bijection is given byΛ = T(𝑐, 𝑐) and 1Λ𝜎 = T(𝑐[𝑑], 𝑐).a

These triangulated categories admit a unique DG enhancement.
aAs objects, 𝑐[𝑑] = 𝑐 but [𝑑] does not act like the identity onΛ = T(𝑐, 𝑐).
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What structure does C = add(𝑐) inherit from T ?



(𝑑 + 2)-angulated categories

Definition (Geiss, Keller, and Oppermann 2013)
A (𝑑 + 2)-angulated category is a category C equipped with a
self-equivalence

Σ∶ C ∼⟶ C,

called suspension, and a class of diagrams, called exact
(𝑑 + 2)-angles,

𝑥𝑑+2
𝑓𝑑+2⟶𝑥𝑑+1

𝑓𝑑+1⟶⋯ 𝑓2⟶𝑥1
𝑓1⟶Σ𝑥𝑑+2,

satisfying axioms similar to those of triangulated categories (which
is the case 𝑑 = 1).



GKO (𝑑 + 2)-angulated categories

Theorem (Geiss, Keller, and Oppermann 2013)
If C ⊂ T is a 𝑑ℤ-cluster tilting subcategory then (C, [𝑑]) is
(𝑑 + 2)-angulated with exact (𝑑 + 2)-angles

𝑋𝑑+1 𝑋𝑑 ⋯ 𝑋2

𝑋𝑑+2 𝑋𝑑.5 𝑋𝑑−1.5 ⋯ 𝑋2.5 𝑋1

𝑓𝑑+1

𝑓2𝑓𝑑+2

+1 +1 +1

𝑓1



Properties of (𝑑 + 2)-angulated categories

Proposition (Heller 1968; Geiss, Keller, and Oppermann 2013)
If C is (𝑑 + 2)-angulated then mod(C) is a Frobenius abelian
category.

If C = add(𝑐) ⊂ T andΛ = T(𝑐, 𝑐) then

C ≃ proj(Λ), mod(C) ≃ mod(Λ).

Corollary
If 𝑐 ∈ T is basic 𝑑ℤ-cluster tilting thenΛ is self-injective.

Proposition (Hanihara 2020; Jasso–M. 22)
If 𝑐 ∈ T is basic 𝑑ℤ-cluster tilting thenΛ is twisted (𝑑 + 2)-periodic.
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AL (𝑑 + 2)-angulated categories

Theorem (Amiot 2007; Lin 2019)
IfΛ is a basic finite-dimensional self-injective twisted
(𝑑 + 2)-periodic algebra w.r.t. an automorphism 𝜎 and

1Λ𝜎 ↪ 𝑃𝑑+2 → 𝑃𝑑+1 →⋯→ 𝑃2 → 𝑃1 ↠ Λ

is an extension with projective-injective middleΛ-bimodules 𝑃𝑖, in
particularΩ𝑑+2

Λ𝑒 (Λ) ≅ 1Λ𝜎 in mod(Λ𝑒), then

proj(Λ)

is (𝑑 + 2)-angulated with desuspension functor

𝜎∗ ∶ proj(Λ)⟶ proj(Λ).

This applies to all basic finite-dimensional self-injective algebras of
finite representation type (Dugas 2010).



AL (𝑑 + 2)-angulated categories

A (𝑑 + 2)-angle in proj(Λ)

(𝑋𝑑+2)𝜎⟶𝑋𝑑+1⟶⋯⟶𝑋2 ⟶𝑋1
𝑓⟶𝑋𝑑+2,

is exact if it satisfies the two following conditions:

1. The following extended sequence is exact

(𝑋1)𝜎
𝑓⟶ (𝑋𝑑+2)𝜎⟶𝑋𝑑+1⟶⋯⟶𝑋2 ⟶𝑋1

𝑓⟶𝑋𝑑+2.

2. The induced extension in mod(Λ)with𝑀 = im 𝑓

𝑀𝜎
𝑖
↪ (𝑋𝑑+2)𝜎⟶𝑋𝑑+1⟶⋯⟶𝑋2 ⟶𝑋1

𝑝↠𝑀

and 𝑓 = 𝑖𝑝 is equivalent to the following one in Ext𝑑+2Λ (𝑀,𝑀𝜎)

𝑀 ⊗Λ (1Λ𝜎 ↪ 𝑃𝑑+2 → 𝑃𝑑+1 →⋯→ 𝑃2 → 𝑃1 ↠ Λ).



AL (𝑑 + 2)-angulated categories

Proposition (Jasso–M.’22)
LetΛ be a basic finite-dimensional self-injective twisted
(𝑑 + 2)-periodic algebra w.r.t. an automorphism 𝜎. Up to
equivalence, the AL (𝑑 + 2)-angulated structure on proj(Λ)with
desuspension 𝜎∗ is independent of the choice of an extension with
projective-injective middle terms.

Proof (idea)

1Λ𝜎 𝑃𝑑+2 𝑃𝑑+1 ⋯ 𝑃2 𝑃1 Λ

1Λ𝜎 𝑄𝑑+2 𝑄𝑑+1 ⋯ 𝑄2 𝑄1 Λ

𝑢⋅−

where 𝑢 ∈ 𝑍(Λ) ↠ 𝑍(Λ)maps to a unit, and 𝑍(Λ)× ↠ 𝑍(Λ)×
is also surjective since dimΛ < ∞. SQUARE
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(𝑑 + 2)-angulated categories recap

basic 𝑑ℤ-cluster tilting 𝑐 ∈ T triangulated
⇓

C = add(𝑐) is (𝑑 + 2)-angulated
⇕

Λ = T(𝑐, 𝑐) is self-injective twisted (𝑑 + 2)-periodic



Warning!



(𝑑 + 2)-angulated categories

If 𝑐 ∈ T is a basic 𝑑ℤ-cluster tilting object andΛ = T(𝑐, 𝑐) then

C = add(𝑐) ≃ proj(Λ)

carries two (𝑑 + 2)-angulated structures:
1. The GKO structure since C ⊂ T is 𝑑ℤ-cluster tilting.
2. The AL structure forΛ is self-injective twisted (𝑑 + 2)-periodic.

These structures need not be equivalent!
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Enhancements

A triangulated category T is algebraic (Keller 2007) if

T ≃ D𝑐(A)⏟⏟⏟⏟⏟⏟⏟
Perfect derived category

for some DG categoryA, which is then called enhancement.

A DG functor 𝑓∶ A → B is a Morita equivalence if

𝕃𝑓∗ ∶ D𝑐(A) ∼⟶ D𝑐(B)
is an equivalence.

An algebraic triangulated category has a unique enhancement if
any two enhancements are Morita equivalent.

A DG functor 𝑓∶ A → B is a quasi-equivalence if

𝐻0(𝑓) ∶ 𝐻0(A) ∼⟶𝐻 0(B), 𝑓 ∶ A(𝑥, 𝑦) ∼⟶ B(𝑓(𝑥), 𝑓(𝑦)), 𝑥, 𝑦 ∈ A.

Quasi-equivalences are Morita equivalences.



Enhancements

Given a DG categoryAwe have a Yoneda embedding

𝐻0(A) ↪ D𝑐(A),
𝑥 ↦ A(−, 𝑥).

A DG categoryA is pre-triangulated (Bondal and Kapranov 1991) if
the Yoneda embedding is an equivalence

𝐻0(A)
∼
↪ D𝑐(A).

Morita equivalences between pre-triangulated categories are
quasi-equivalences.

Any DG category embeds in a pre-triangulated one through a
Morita equivalence

A ↪ triA.



The cohomology of an enhancement

IfA is a pre-triangulated enhancement of T = 𝐻 0(A) ≃ D𝑐(A)

𝐻𝑛(A(𝑥, 𝑦)) ≅ T(𝑥, 𝑦[𝑛]) = T𝑛(𝑥, 𝑦), 𝑥, 𝑦 ∈ T, 𝑛 ∈ ℤ.

If T = ⟨𝑐⟩ then
A(𝑐, 𝑐) ↪ A

is a Morita equivalence.

If 𝑐 ∈ T is basic 𝑑ℤ-cluster tilting

𝐻∗(A(𝑐, 𝑐)) ≅ T∗(𝑐, 𝑐) = ⨁
𝑖∈ℤ

T∗(𝑐, 𝑐[𝑑𝑖])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
degree 𝑑𝑖

is 𝑑-sparse.



The cohomology of an enhancement

IfΛ = T(𝑐, 𝑐) and [𝜎] ∈ Out(Λ) is such that

T(𝑐[𝑑], 𝑐) ≅ 1Λ𝜎

as aΛ-bimodule then

𝐻∗(A(𝑐, 𝑐)) ≅ ⨁
𝑖∈ℤ

𝜎𝑖Λ1⏟⏟⏟⏟⏟
degree 𝑑𝑖

=
Λ⟨𝑡±1⟩

(𝑡𝜆 − 𝜎(𝜆)𝑡)𝜆∈Λ
=∶ Λ(𝜎, 𝑑), |𝑡| = −𝑑.



Recovering the enhancement from the cohomology

The DG algebraA(𝑐, 𝑐) is determined by a minimal 𝐴∞-algebra
structure onΛ(𝜎, 𝑑), given by operations (Stasheff 1963)

𝑚𝑛 ∶ Λ(𝜎, 𝑑)⊗
𝑛⋯ ⊗Λ(𝜎, 𝑑)⟶ Λ(𝜎, 𝑑), |𝑚𝑛| = 2−𝑛, 𝑛 ≥ 1,

satisfying equations:

• 𝑚1 = 0 by minimality.
• 𝑚2 is the product inΛ(𝜎, 𝑑).
• 𝑚𝑖+2 = 0 for 𝑖 > 0 if 𝑑 ∤ 𝑖 sinceΛ(𝜎, 𝑑) is 𝑑-sparse.
• 𝑚𝑑+2 ∈ C𝑑+2,−𝑑(Λ(𝜎, 𝑑)) is a Hochschild cocycle. Its class

{𝑚𝑑+2} ∈ HH𝑑+2,−𝑑(Λ(𝜎, 𝑑))

is called universal Massey product of length 𝑑 + 2.
• 𝑚2𝑑+2 ∈ C2𝑑+2,−2𝑑(Λ(𝜎, 𝑑)) is a Hochschild cochain such that

𝜕(𝑚2𝑑+2) +
[𝑚𝑑+2,𝑚𝑑+2]

2
= 0 so

[{𝑚𝑑+2}, {𝑚𝑑+2}]
2

= 0.

• …
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satisfying equations:
• 𝑚1 = 0 by minimality.
• 𝑚2 is the product inΛ(𝜎, 𝑑).
• 𝑚𝑖+2 = 0 for 𝑖 > 0 if 𝑑 ∤ 𝑖 sinceΛ(𝜎, 𝑑) is 𝑑-sparse.
• 𝑚𝑑+2 ∈ C𝑑+2,−𝑑(Λ(𝜎, 𝑑)) is a Hochschild cocycle. Its class
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is called universal Massey product of length 𝑑 + 2.
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𝜕(𝑚2𝑑+2) +
[𝑚𝑑+2,𝑚𝑑+2]

2
= 0 so

[{𝑚𝑑+2}, {𝑚𝑑+2}]
2

= 0.

• …



The universal Massey product

Universal Massey products go back to Kadeishvili 1982; Baues and
Dreckmann 1989; Benson, Krause, and Schwede 2004; Kaledin
2007…

The inclusion 𝑗 ∶ Λ ↪ Λ(𝜎, 𝑑) of the degree 0 part induces

𝑗∗ ∶ HH𝑑+2,−𝑑(Λ(𝜎, 𝑑), Λ(𝜎, 𝑑)) ⟶ HH𝑑+2,−𝑑(Λ, Λ(𝜎, 𝑑)),
{𝑚𝑑+2} ↦ 𝑗∗{𝑚𝑑+2}⏟⏟⏟⏟⏟⏟⏟⏟⏟

Restricted universal Massey product

.

The target is

HH𝑑+2,−𝑑(Λ, Λ(𝜎, 𝑑)) = HH𝑑+2(Λ, Λ(𝜎, 𝑑)−𝑑)

= HH𝑑+2(Λ, 𝜎−1Λ1)

≅ HH𝑑+2(Λ, 1Λ𝜎)

= Ext𝑑+2Λ𝑒 (Λ, 1Λ𝜎).
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The universal Massey product

Consider a representative of 𝑗∗{𝑚𝑑+2} ∈ Ext𝑑+2Λ𝑒 (Λ, 1Λ𝜎)

1Λ𝜎 ↪ 𝑃𝑑+2 → 𝑃𝑑+1 →⋯→ 𝑃2 → 𝑃1 ↠ Λ

with 𝑃𝑖 projective-injective except for 𝑃𝑑+2, possibly.

Theorem (Jasso–M.’22)
Let T be an algebraic triangulated category and 𝑐 ∈ T a basic
𝑑ℤ-cluster tilting object. Then 𝑃𝑑+2 is also projective-injective and
the GKO (𝑑 + 2)-angulated structure on C = add(𝑐) ≃ proj(Λ)
coincides with the AL one.

The property of 𝑃𝑑+2 being also projective-injective is equivalent to
𝑗∗{𝑚𝑑+2} being a unit in Holchschild–Tate cohomology

HH•,∗(Λ, Λ(𝜎, 𝑑)) = Ext•,∗Λ𝑒 (Λ, Λ(𝜎, 𝑑)).
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Main theorem

Theorem (Jasso–M.’22)
Let 𝑘 be a perfect field and 𝑑 ≥ 1. There is a bijection between
equivalence classes of pairs:

1. (T, 𝑐)where:
a) T an algebraic triangulated category with finite-dimensional

Hom’s and split idempotents.
b) 𝑐 a basic 𝑑ℤ-cluster tilting object.

2. (Λ, [𝜎])where:
a) Λ a basic finite-dimensional self-injective twisted

(𝑑 + 2)-periodic algebra.
b) [𝜎] ∈ Out(Λ) such thatΩ𝑑+2

Λ𝑒 (Λ) ≅ 1Λ𝜎 in mod(Λ𝑒).

The bijection is given byΛ = T(𝑐, 𝑐) and 1Λ𝜎 = T(𝑐[𝑑], 𝑐).
These triangulated categories admit a unique DG enhancement.



Intrinsic formality

A DG algebra 𝐵 is formal if 𝐵 ≃ 𝐻∗(𝐵).

A graded algebra 𝐴 is intrinsically formal if, given a DG algebra 𝐵,

𝐻∗(𝐵) ≅ 𝐴 ⟹ 𝐵 ≃ 𝐴.

Equivalently, given DG algebras 𝐵1, 𝐵2,

𝐻∗(𝐵𝑖) ≅ 𝐴 ⟹ 𝐵1 ≃ 𝐵2.

Theorem (Kadeishvili 1988)
HH𝑛+2,−𝑛(𝐴) = 0 for 𝑛 > 0⇒ 𝐴 is intrinsically formal.

If𝐻∗(𝐵) ≅ 𝐴 is 𝑑-sparse and {𝑚𝐵
𝑑+2} ≠ 0 ∈ HH𝑑+2,−𝑑(𝐴) then 𝐴 is

not intrinsically formal. In particularΛ(𝜎, 𝑑) is not intrinsically
formal ifΛ is not separable.
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A separable example

Let 𝑑 ≥ 2 be even. The algebraic triangulated category

T = D𝑐(𝑘[𝑡±1]) ≃ mod(𝑘)× 𝑑⋯ ×mod(𝑘), |𝑡| = −𝑑,

has a basic 𝑑ℤ-cluster tilting object

𝑐 = 𝑘[𝑡±1] ↦ (𝑘, 0,… , 0)

with (intrinsically formal graded) endomorphism algebra

T(𝑐, 𝑐) = Λ = 𝑘, T∗(𝑐, 𝑐) = Λ(𝜎, 𝑑) = 𝑘[𝑡±1],

by Kadeishvili 1988, since

HH•,∗(𝑘[𝑡±1]) = 𝑘[𝑡±1, 𝛿]/(𝛿2)

with
𝛿 ∈ HH1,0(𝑘[𝑡±1])

the fractional Euler class, defined by 𝛿|Λ = 0 and 𝛿(𝑡) = −𝑡.



Massey formality

A 𝑑-sparse Massey algebra (𝐴,𝑚) is a 𝑑-sparse graded algebra 𝐴 and

𝑚 ∈ HH𝑑+2,−𝑑(𝐴),
[𝑚,𝑚]

2
= 0.

We say that (𝐴,𝑚) is Massey formal if, given DG algebras 𝐵1, 𝐵2,

𝐻∗(𝐵𝑖) ≅ 𝐴
{𝑚𝐵𝑖

𝑑+2} ↦ 𝑚
}⟹ 𝐵1 ≃ 𝐵2.

The Hochschild cohomology of a 𝑑-sparse Massey algebra
HH•,∗(𝐴,𝑚) is the cohomology of the complex

(HH•,∗(𝐴), [𝑚, −]).

Theorem (Jasso–M.’22)
HH𝑛+2,−𝑛(𝐴,𝑚) = 0 for 𝑛 > 𝑑⇒ (𝐴,𝑚) is Massey formal.
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Uniqueness

Theorem (Jasso–M.’22)
Let T be an algebraic triangulated category with basic 𝑑ℤ-cluster
tilting object 𝑐 ∈ T. IfΛ = T(𝑐, 𝑐) and T(𝑐[𝑑], 𝑐) ≅ 1Λ𝜎 then
(Λ(𝜎, 𝑑), {𝑚𝑑+2}) is Massey formal. In particular T has a unique
enhancement.

Proof

1. 𝑗∗{𝑚𝑑+2} ∈ HH𝑑+2,−𝑑(Λ, Λ(𝜎, 𝑑)) is a unit in HH•,∗(Λ, Λ(𝜎, 𝑑)).
2. HH•,∗(Λ, Λ(𝜎, 𝑑)) → HH•,∗(Λ, Λ(𝜎, 𝑑)) is an isomorphism for

• > 0 and surjective for • = 0.
3. The product with 𝑗∗{𝑚𝑑+2} in HH•,∗(Λ, Λ(𝜎, 𝑑)) is an

isomorphism for • > 0 and surjective for • = 0.
4. We have a square-zero extension

HH•−1,∗(Λ, Λ(𝜎, 𝑑))⟨𝜎⟩ ↪ HH•,∗(Λ(𝜎, 𝑑)) 𝑗∗↠ HH•,∗(Λ, Λ(𝜎, 𝑑))⟨𝜎⟩.
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4. We have a square-zero extension

HH•−1,∗(Λ, Λ(𝜎, 𝑑))⟨𝜎⟩ ↪ HH•,∗(Λ(𝜎, 𝑑)) 𝑗∗↠ HH•,∗(Λ, Λ(𝜎, 𝑑))⟨𝜎⟩.



Uniqueness

Theorem (Jasso–M.’22)
Let T be an algebraic triangulated category with basic 𝑑ℤ-cluster
tilting object 𝑐 ∈ T. IfΛ = T(𝑐, 𝑐) and T(𝑐[𝑑], 𝑐) ≅ 1Λ𝜎 then
(Λ(𝜎, 𝑑), {𝑚𝑑+2}) is Massey formal. In particular T has a unique
enhancement.
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Uniqueness

5. The product with {𝑚𝑑+2} in HH•,∗(Λ(𝜎, 𝑑)) is an isomorphism
for • > 1 and surjective for • = 1.

6. The product with {𝑚𝑑+2} in HH•,∗(Λ(𝜎, 𝑑)) is nullhomotopic:

{𝑚𝑑+2} ⋅ 𝑥 = [{𝑚𝑑+2}, 𝛿 ⋅ 𝑥] + 𝛿 ⋅ [{𝑚𝑑+2}, 𝑥].

To see it like a null-homotopy:

𝑓(𝑥) = 𝜕ℎ(𝑥) + ℎ𝜕(𝑥),
𝑓(𝑥) = {𝑚𝑑+2} ⋅ 𝑥,
𝜕(𝑥) = [{𝑚𝑑+2}, 𝑥],
ℎ(𝑥) = 𝛿 ⋅ 𝑥.

7. HH•,∗(Λ(𝜎, 𝑑)) = 0 for • > 𝑑.
SQUARE
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Main theorem

Theorem (Jasso–M.’22)
Let 𝑘 be a perfect field and 𝑑 ≥ 1. There is a bijection between
equivalence classes of pairs:

1. (T, 𝑐)where:
a) T an algebraic triangulated category with finite-dimensional

Hom’s and split idempotents.
b) 𝑐 a basic 𝑑ℤ-cluster tilting object.

2. (Λ, [𝜎])where:
a) Λ a basic finite-dimensional self-injective twisted

(𝑑 + 2)-periodic algebra.
b) [𝜎] ∈ Out(Λ) such thatΩ𝑑+2

Λ𝑒 (Λ) ≅ 1Λ𝜎 in mod(Λ𝑒).

The bijection is given byΛ = T(𝑐, 𝑐) and 1Λ𝜎 = T(𝑐[𝑑], 𝑐).
These triangulated categories admit a unique DG enhancement.



Surjectivity

Given a basic self-injective algebraΛ, an automorphism 𝜎 and an
extension

𝜂∶ 1Λ𝜎 ↪ 𝑃𝑑+2 → 𝑃𝑑+1 →⋯→ 𝑃2 → 𝑃1 ↠ Λ

with projective-injective middle terms, we construct a DG algebra 𝐵
such that T = D𝑐(𝐵) has basic 𝑑ℤ-cluster tilting object 𝑐 = 𝐵with

T(𝑐, 𝑐) ≅ Λ, T(𝑐[𝑑], 𝑐) ≅ 1Λ𝜎,

in the following way.

It suffices to have

𝐻∗(𝐵) ≅ Λ(𝜎, 𝑑), 𝑗∗{𝑚𝑑+2} ↦ {𝜂} ∈HH𝑑+2,−𝑑(Λ, Λ(𝜎, 𝑑))

≅ Ext𝑑+2Λ𝑒 (Λ, 1Λ𝜎).
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Surjectivity

Theorem (Jasso–M.’22)
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𝑗∗(𝑚) = {𝜂},
[𝑚,𝑚]

2
= 0.

Theorem (Jasso–M.’22)
Given a 𝑑-sparse Massey algebra (𝐴,𝑚), if HH𝑛+1,−𝑛(𝐴,𝑚) = 0 for
𝑛 > 2𝑑 + 3 then there exists a DG algebra 𝐵with

𝐻∗(𝐵) ≅ 𝐴, {𝑚𝑑+2} ↦ 𝑚.
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Thanks for your attention! SMILE
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