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Theorem (Jasso-M.’22)

Let k be a perfect field and = 1. There is a bijection between
equivalence classes of pairs:
1. (7, c¢) where:
a) T asmall algebraic triangulated category with

finite-dimensional Hom’s and split idempotents.
b) c abasic dZ-cluster tilting object.

2. (A, [0]) where:

a) A abasic finite-dimensional self-injective twisted
(d + 2)-periodic algebra.
b) [o] € Out(A) such that Q4F?(A) = | A, in mod(A®).

The bijection is given by A = T(c, ¢) and ; A, = T(cld], ¢).?

These triangulated categories admit a unique DG enhancement.

#As objects, c[d] = ¢ but [d] does not act like the identity on A = T(c, ¢).



Theorem (Jasso-M.’22)

Let k be a perfect field and = 1. There is a bijection between
equivalence classes of pairs:
1. (7, c¢) where:
a) T asmall algebraic triangulated category with

finite-dimensional Hom’s and split idempotents.
b) c abasic dZ-cluster tilting object.

2. (A, [0]) where:

a) A abasic finite-dimensional self-injective twisted
(d + 2)-periodic algebra.
b) [o] € Out(A) such that Q4F?(A) = | A, in mod(A®).

The bijection is given by A = T(c, ¢) and ; A, = T(cld], ¢).?

These triangulated categories admit a unique DG enhancement.

#As objects, c[d] = ¢ but [d] does not act like the identity on A = T(c, ¢).



What structure does € = add(c) inherit from T ?



(d + 2)-angulated categories

Definition (Geiss, Keller, and Oppermann 2013)

A (d + 2)-angulated category is a category € equipped with a
self-equivalence
=G,

called suspension, and a class of diagrams, called exact
(d + 2)-angles,

fd+2 fd+1 f2 fl Z
X2 Xd+1 X1 X2,

satisfying axioms similar to those of triangulated categories (which
is the case d = 1).



GKO (d + 2)-angulated categories

Theorem (Geiss, Keller, and Oppermann 2013)

If € c Tis a dZ-cluster tilting subcategory then (C, [d]) is
(d + 2)-angulated with exact (d + 2)-angles

fd+l

([+1 — X{I
“7 NS\ / \fz
Xipp 11— X5 11— Xy5 Xos &11— X
N J
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Properties of (d + 2)-angulated categories
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If Cis (d + 2)-angulated then mod(C) is a Frobenius abelian
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category.
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Corollary

If ¢ € T is basic dZ-cluster tilting then A is self-injective.

Proposition (Hanihara 2020; Jasso-M. 22)
If ¢ € T is basic dZ-cluster tilting then A is twisted (d + 2)-periodic.



AL (d + 2)-angulated categories

Theorem (Amiot 2007; Lin 2019)

If A is a basic finite-dimensional self-injective twisted
(d + 2)-periodic algebra w.r.t. an automorphism o and

1A¢ = Pyp = Py — =B - P~ A

is an extension with projective-injective middle A-bimodules P;, in
particular Q%t%(A) = A, in mod(A®), then

proj(A)
is (d + 2)-angulated with desuspension functor

g*: proj(A) — proj(A).

This applies to all basic finite-dimensional self-injective algebras of
finite representation type (Dugas 2010).



AL (d + 2)-angulated categories

A (d + 2)-angle in proj(A)

f
Xagr2do—™Xg1— = — Xy — X7 — Xy

is exact if it satisfies the two following conditions:

1. The following extended sequence is exact

i i
X))o — Xpp2)e—™Xg1— - — Xy — X; — Xgio-

2. The induced extension in mod(A) with M = im f
i p
M, = Xgi2)g—Xgp— " —X — X, > M
da+2

and f = ip is equivalent to the following one in Ext,"*(M, M)

M@y Gy = Py = Payy — = P, — P = A).



AL (d + 2)-angulated categories

Proposition (Jasso-M.’22)

Let A be a basic finite-dimensional self-injective twisted

(d + 2)-periodic algebra w.r.t. an automorphism o. Up to
equivalence, the AL (d + 2)-angulated structure on proj(A) with
desuspension ¢ * is independent of the choice of an extension with
projective-injective middle terms.



AL (d + 2)-angulated categories

Proposition (Jasso-M.’22)

Let A be a basic finite-dimensional self-injective twisted

(d + 2)-periodic algebra w.r.t. an automorphism o. Up to
equivalence, the AL (d + 2)-angulated structure on proj(A) with
desuspension ¢ * is independent of the choice of an extension with
projective-injective middle terms.

Proof (idea)

IAU;)Pd+2_>Pd+1_>'"_>P2_>P1_»A

A A Ll

Ne — Qo —> Quyy —> - —> Q — Q) —» A

where u € Z(A) - Z(A) maps to a unit, and Z (A)* — Z(A)*
is also surjective since dim A < oco. O



(d + 2)-angulated categories recap

basic dZ-cluster tilting ¢ € T triangulated

U
C = add(c) is (d + 2)-angulated

)

A = T(c, c) is self-injective twisted (d + 2)-periodic



Warning!



(d + 2)-angulated categories

If ¢ € Tis a basic dZ-cluster tilting object and A = T(c, c¢) then
C = add(c) = proj(A)

carries two (d + 2)-angulated structures:
1. The GKO structure since C c T is dZ-cluster tilting.
2. The AL structure for A is self-injective twisted (d + 2)-periodic.

These structures need not be equivalent!
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Enhancements

A triangulated category T is algebraic (Keller 2007) if
T = D¢(A)
~———
Perfect derived category
for some DG category A, which is then called enhancement.
A DG functor f: A — B is a Morita equivalence if
Lf,: D°(A) — D°(B)
is an equivalence.

An algebraic triangulated category has a unique enhancement if
any two enhancements are Morita equivalent.

A DG functor f: A — Bis a quasi-equivalence if
H(): HYA) — H°(B), f: A,y — Bf®),f1), xyeA,

Quasi-equivalences are Morita equivalences.



Enhancements

Given a DG category A we have a Yoneda embedding

H°(A) — D°(A),
x — A(—, x).

A DG category A is pre-triangulated (Bondal and Kapranov 1991) if
the Yoneda embedding is an equivalence

H°(A) = D°(A).
Morita equivalences between pre-triangulated categories are
quasi-equivalences.

Any DG category embeds in a pre-triangulated one through a
Morita equivalence
A — tri A.



The cohomology of an enhancement

If A is a pre-triangulated enhancement of T = H°(A) = D°(A)

H"(A(x,y)) = T(x,yln]) = T"(x, y), x,yeT, nelZ
If T = (c¢) then
Alc,c) — A

is a Morita equivalence.
If ¢ € T is basic dZ-cluster tilting

H*(A(c,0)) = T (c,c) = P T*(c, cldil)
22 degree di

is d-sparse.



The cohomology of an enhancement

If A = T(c, ¢) and [o] € Out(A) is such that
T(cldl, c) =,1A,4

as a A-bimodule then

A<til>
H* ,C)) = iRy = =: A(o, d), = —d.
(Alc, o) 162 R Wiey ey s (0,d), ¢l

degree di




Recovering the enhancement from the cohomology

The DG algebra Al(c, c¢) is determined by a minimal A_,-algebra
structure on A(o, d), given by operations (Stasheff 1963)

m,: Ao, d)® - ® (o, d) — A(o, d), lm,l=2-n, n=1,

satisfying equations:



Recovering the enhancement from the cohomology

The DG algebra Al(c, c¢) is determined by a minimal A_,-algebra
structure on A(o, d), given by operations (Stasheff 1963)

m,: Ao, d)® - ® (o, d) — A(o, d), lm,l=2-n, n=1,

satisfying equations:
e m,; = 0 by minimality.



Recovering the enhancement from the cohomology

The DG algebra Al(c, c¢) is determined by a minimal A_,-algebra
structure on A(o, d), given by operations (Stasheff 1963)

m,: Ao, d)® - ® (o, d) — A(o, d), lm,l=2-n, n=1,

satisfying equations:
e m,; = 0 by minimality.
e m, is the productin A(o, d).



Recovering the enhancement from the cohomology

The DG algebra Al(c, c¢) is determined by a minimal A_,-algebra
structure on A(o, d), given by operations (Stasheff 1963)

m,: Ao, d)® - ® (o, d) — A(o, d), lm,l=2-n, n=1,
satisfying equations:

e m,; = 0 by minimality.

e m, is the productin A(o, d).

e m;,, =0fori>0ifd ¢ isince A(o, d) is d-sparse.



Recovering the enhancement from the cohomology

The DG algebra Al(c, c¢) is determined by a minimal A_,-algebra
structure on A(o, d), given by operations (Stasheff 1963)

m,: Ao, d)® - ® (o, d) — A(o, d), lm,|=2-n, n=1,

satisfying equations:
e m,; = 0 by minimality.
e m, is the productin A(o, d).
e m;,, =0fori>0ifd ¢ isince A(o, d) is d-sparse.
® My, € C™*2=4(A(0, d)) is a Hochschild cocycle. Its class

{m g} € HHP2=4(A (0, d))

is called universal Massey product of length d + 2.



Recovering the enhancement from the cohomology

The DG algebra Al(c, c¢) is determined by a minimal A_,-algebra
structure on A(o, d), given by operations (Stasheff 1963)

m,: Ao, d)® - ® (o, d) — A(o, d), lm,l=2-n, n=1,

satisfying equations:
e m,; = 0 by minimality.
e m, is the productin A(o, d).
e m;,, =0fori>0ifd ¢ isince A(o, d) is d-sparse.
® My, € C™*2=4(A(0, d)) is a Hochschild cocycle. Its class

{md+2} € HH(1+2,—([(A(O., Ol))

is called universal Massey product of length d + 2.
o My, € C2M2724(A(q, d)) is a Hochschild cochain such that

i) & M PN [{md+2},2{md+2}] o




Recovering the enhancement from the cohomology
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is called universal Massey product of length d + 2.

o My, € C2*2724(A\(q, d)) is a Hochschild cochain such that
(M40, Mg, [{m gi0}, {mgy0}]

0y uz) + — =5 =0 50 5 =0.
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Dreckmann 1989; Benson, Krause, and Schwede 2004; Kaledin
2007...
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The universal Massey product

Universal Massey products go back to Kadeishvili 1982; Baues and
Dreckmann 1989; Benson, Krause, and Schwede 2004; Kaledin
2007...

The inclusion j: A — A(o, d) of the degree 0 part induces

j* HH*2 (Ao, d), Alo, d)) — HHT27I(A, Ao, d),
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Restricted universal Massey product

The target is

HH2~4(A A(o, d)) = HHY2(A, Ao, d)™%)
= HH™2(A, 5-1A)
= HH™2(A, 1 A,)
= Extﬁz(/\, 106).



The universal Massey product

Consider a representative of j*{m ,,} € Extj{tz(A, 1As)
1Ag = Pgyp = Pgyy =" =P — P~ A

with P; projective-injective except for P, ,, possibly.
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Consider a representative of j*{m ,,} € Extj(tz(A, 1As)

1Ag = Pgyp = Pgyy =" =P — P~ A
with P; projective-injective except for P, ,, possibly.

Theorem (Jasso-M.’22)

Let 7 be an algebraic triangulated category and ¢ € 7 a basic
dZ-cluster tilting object. Then P,,, is also projective-injective and
the GKO (d + 2)-angulated structure on C = add(c) = proj(A)
coincides with the AL one.

The property of P,;,, being also projective-injective is equivalent to
j*{m,,} being a unit in Holchschild-Tate cohomology

HH"" (A, A(0, d) = Exty? (A, A0, d).
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Intrinsic formality

A DG algebra Bis formal if B = H*(B).
A graded algebra A is intrinsically formal if, given a DG algebra B,

H*(B) = A= B = A.
Equivalently, given DG algebras B, B,,
H*(B;) = A= B, = B,.

Theorem (Kadeishvili 1988)

HH"*2""(A) = 0forn > 0= Ais intrinsically formal.

If H*(B) = Ais d-sparse and {m?5 S F0E HH*2=4(A) then A is

d+
not intrinsically formal. In particular A(o, d) is not intrinsically

formal if A is not separable.



A separable example

Let d = 2 be even. The algebraic triangulated category
T = DC(k[t*"]) = mod(k)x - x mod(k), 1t = —d,
has a basic dZ-cluster tilting object
¢ = k[t*'] — (k,0,...,0)
with (intrinsically formal graded) endomorphism algebra
T(c,c) = A=k, T*(c,¢) = Ao, d) = k[t*],
by Kadeishvili 1988, since
HH®* (k[t%']) = k[t*', 6]/(6%)

with
8 € HHY (k[t*1))

the fractional Euler class, defined by 6, = 0and 6(¢) = —t.
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The Hochschild cohomology of a d-sparse Massey algebra
HH®* (A, m) is the cohomology of the complex

(HH**(A), [m, —]).



Massey formality

A d-sparse Massey algebra (A, m) is a d-sparse graded algebra A and

[m,m]
=

m € HH™274(4), 0.

We say that (A, m) is Massey formal if, given DG algebras B,, B,,

H*B;) = A
T g — B, = B,.
da+2

The Hochschild cohomology of a d-sparse Massey algebra
HH®* (A, m) is the cohomology of the complex

(HH**(A), [m, —]).

Theorem (Jasso-M.’22)

HH"*27"(A, m) = 0 for n > d = (A, m) is Massey formal.
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6. The product with {m ,,,} in HH** (A(o, d)) is nullhomotopic:
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To see it like a null-homotopy:

f(x) =0h(x) + ho(x),
f(x) = {md+2} - X,
a(x) = [{md+2}» x]»

h(x) =0 - x.

7. HH**(A(o, d)) = 0 for e > d.
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Given a basic self-injective algebra A, an automorphism o and an
extension

n: g = Pgp = Pgy == B =B~ A

with projective-injective middle terms, we construct a DG algebra B
such that T = D(B) has basic dZ-cluster tilting object ¢ = B with

‘I(C, C) = A, T(C[d]r C) = ]Ag'!

in the following way.



Given a basic self-injective algebra A, an automorphism o and an
extension

n: g = Pgp = Pgy == B =B~ A

with projective-injective middle terms, we construct a DG algebra B
such that T = D(B) has basic dZ-cluster tilting object ¢ = B with

‘I(C, C) = A, T(C[d]r C) = ]Ag'!

in the following way.

It suffices to have

H*(B) = Ao, d), j*{imy.,} — i} e HH®2~9(A, A(o, d)
= Ext{t2(A, 1 Ay).



Theorem (Jasso-M.’22)
There exists a unique m € HH*?>~%(A(g, d), A(o, d)) such that

[m,m]
=

0.

jrm) = {n},



Theorem (Jasso-M.’22)
There exists a unique m € HH*?>~%(A(g, d), A(o, d)) such that

[m,m]
=

0.

jrm) = {n},

Theorem (Jasso-M.’22)

Given a d-sparse Massey algebra (A, m), if HH"*~"(A, m) = 0 for
n > 2d + 3 then there exists a DG algebra B with

H*(B) £ A, {m, .} — m.



Thanks for your attention! ©
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