Triangulated categories with universal Toda bracket

Fernando Muro

(joint with H.-J. Baues)

Max-Planck-Institut für Mathematik, Bonn

Workshop on Triangulated Categories

Leeds, August 2006

Triangulated category:

Triangulated category:

• A additive category,

Triangulated category:

- A additive category,
- $+ \Sigma : \mathbf{A} \xrightarrow{\sim} \mathbf{A}$ self-equivalence,

Triangulated category:

- A additive category,
- $+ \Sigma \colon \mathbf{A} \xrightarrow{\sim} \mathbf{A}$ self-equivalence,
- + $\, \mathcal{E} \,$ class of exact triangles

$$X \xrightarrow{f} Y \longrightarrow C_f \longrightarrow \Sigma X,$$

Triangulated category:

- A additive category,
- $+ \Sigma \colon \mathbf{A} \xrightarrow{\sim} \mathbf{A}$ self-equivalence,
- $+~\mathcal{E}$ class of exact triangles

$$X \xrightarrow{f} Y \longrightarrow C_f \longrightarrow \Sigma X,$$

+ axioms.

• DG-categories (categories enriched in chain complexes),

- DG-categories (categories enriched in chain complexes),
- stable S-categories (categories enriched in simplicial sets),

- DG-categories (categories enriched in chain complexes),
- stable S-categories (categories enriched in simplicial sets),
- M stable model category,

- DG-categories (categories enriched in chain complexes),
- stable S-categories (categories enriched in simplicial sets),
- M stable model category,
 - $\star~\mathbf{A}=\mathrm{Ho}\,\mathbf{M}$ the homotopy category,

- DG-categories (categories enriched in chain complexes),
- stable S-categories (categories enriched in simplicial sets),
- M stable model category,
 - $\star~\mathbf{A}=\mathrm{Ho}\,\mathbf{M}$ the homotopy category,
 - $\star~\Sigma$ the suspension,

- DG-categories (categories enriched in chain complexes),
- stable S-categories (categories enriched in simplicial sets),
- M stable model category,
 - $\star~\mathbf{A}=\mathrm{Ho}\,\mathbf{M}$ the homotopy category,
 - $\star~\Sigma$ the suspension,
 - \star ${\mathcal E}$ is induced by cofiber sequences $A \rightarrowtail B \twoheadrightarrow B/A$,

- DG-categories (categories enriched in chain complexes),
- stable S-categories (categories enriched in simplicial sets),
- ${f M}$ stable model category,
 - $\star~\mathbf{A}=\mathrm{Ho}\,\mathbf{M}$ the homotopy category,
 - $\star~\Sigma$ the suspension,
 - \star ${\mathcal E}$ is induced by cofiber sequences $A \rightarrowtail B \twoheadrightarrow B/A$,

In a model category . . .

In a model category . . .

In a model category . . .

. . . while in a triangulated category . . .

In a model category . . .

... while in a triangulated category ...

In a model category . . .

... while in a triangulated category ...

• Which is the right filler?

 \mathbf{M}

 \mathbf{A}

 $\mathbf{A} \simeq P_0 \mathbf{S}$

 $\mathbf{A} \simeq P_0 \mathbf{S} \longleftarrow P_1 \mathbf{S}$

 $\mathbf{A} \simeq P_0 \mathbf{S} \longleftarrow P_1 \mathbf{S} \longleftarrow P_2 \mathbf{S}$

 $\mathbf{A} \simeq P_0 \mathbf{S} \longleftarrow P_1 \mathbf{S} \longleftarrow P_2 \mathbf{S} \longleftarrow \cdots \longleftarrow P_n \mathbf{S} \qquad \qquad \mathbf{S} = L \mathbf{M} \iff \mathbf{M}$

 $\mathbf{A} \simeq P_0 \mathbf{S} \longleftarrow P_1 \mathbf{S} \longleftarrow P_2 \mathbf{S} \longleftarrow \cdots \longleftarrow P_n \mathbf{S} \longleftarrow P_{n+1} \mathbf{S} \longleftarrow \cdots \longleftarrow \mathbf{S} = L \mathbf{M} \iff \mathbf{M}$

$$k_{n+1} \in H^{n+3}_{DK}(P_n\mathbf{S}, \pi_{n+1}\mathbf{S})$$
 \downarrow

 $\mathbf{A} \simeq P_0 \mathbf{S} \longleftarrow P_1 \mathbf{S} \longleftarrow P_2 \mathbf{S} \longleftarrow \cdots \longleftarrow P_n \mathbf{S} \longleftarrow P_{n+1} \mathbf{S} \longleftarrow \cdots \longleftarrow \mathbf{S} = L \mathbf{M} \iff \mathbf{M}$

$$k_{n+1} \in H^{n+3}_{DK}(P_n \mathbf{S}, \pi_{n+1} \mathbf{S}) \ \downarrow$$

 $\mathbf{A} \simeq P_0 \mathbf{S} \longleftarrow P_1 \mathbf{S} \longleftarrow P_2 \mathbf{S} \longleftarrow \cdots \longleftarrow P_n \mathbf{S} \longleftarrow P_{n+1} \mathbf{S} \longleftarrow \cdots \longleftarrow \mathbf{S} = L \mathbf{M} \iff \mathbf{M}$

• What kind of information does $P_n \mathbf{S}$ contain?

$$k_{n+1} \in H^{n+3}_{DK}(P_n\mathbf{S}, \pi_{n+1}\mathbf{S})$$
 \downarrow

 $\mathbf{A} \simeq P_0 \mathbf{S} \longleftarrow P_1 \mathbf{S} \longleftarrow P_2 \mathbf{S} \longleftarrow \cdots \longleftarrow P_n \mathbf{S} \longleftarrow P_{n+1} \mathbf{S} \longleftarrow \cdots \longleftarrow \mathbf{S} = L \mathbf{M} \iff \mathbf{M}$

• What kind of information does $P_n \mathbf{S}$ contain?

• Can one recover Σ and \mathcal{E} from $P_n \mathbf{S}$?

$$k_{n+1} \in H^{n+3}_{DK}(P_n\mathbf{S}, \pi_{n+1}\mathbf{S})$$
 \downarrow

 $\mathbf{A} \simeq P_0 \mathbf{S} \longleftarrow P_1 \mathbf{S} \longleftarrow P_2 \mathbf{S} \longleftarrow \cdots \longleftarrow P_n \mathbf{S} \longleftarrow P_{n+1} \mathbf{S} \longleftarrow \cdots \longleftarrow \mathbf{S} = L \mathbf{M} \iff \mathbf{M}$

- What kind of information does $P_n \mathbf{S}$ contain?
- Can one recover Σ and \mathcal{E} from $P_n \mathbf{S}$?
- Can one recover $K_m \mathbf{M}$ from $P_n \mathbf{S}$ for $n \gg m$?

$$\mathbf{A} \simeq P_0 \mathbf{S} \xleftarrow{} P_1 \mathbf{S} \xleftarrow{} P_2 \mathbf{S} \xleftarrow{} \cdots \xleftarrow{} P_n \mathbf{S} \xleftarrow{} P_{n+1} \mathbf{S} \xleftarrow{} \mathbf{S} = L \mathbf{M} \xleftarrow{} \mathbf{M}$$

translation functor Σ
and exact triangles

• What kind of information does $P_n \mathbf{S}$ contain?

- Can one recover Σ and \mathcal{E} from $P_n \mathbf{S}$?
- Can one recover $K_m \mathbf{M}$ from $P_n \mathbf{S}$ for $n \gg m$?

$$\begin{array}{c} k_{n+1} \in H^{n+3}_{DK}(P_n\mathbf{S},\pi_{n+1}\mathbf{S}) \\ \downarrow \\ \mathbf{A} \simeq P_0\mathbf{S} \xleftarrow{} P_1\mathbf{S} \xleftarrow{} P_2\mathbf{S} \xleftarrow{} \cdots \xleftarrow{} P_n\mathbf{S} \xleftarrow{} P_{n+1}\mathbf{S} \xleftarrow{} \cdots \xleftarrow{} \mathbf{S} = L\mathbf{M} \xleftarrow{} \mathbf{M} \\ \uparrow \\ \text{translation functor } \Sigma \\ \text{and exact triangles} \end{array}$$

- What kind of information does $P_n \mathbf{S}$ contain?
- Can one recover Σ and \mathcal{E} from $P_n \mathbf{S}$?
- Can one recover $K_m \mathbf{M}$ from $P_n \mathbf{S}$ for $n \gg m$?

$$\begin{array}{c} k_{n+1} \in H^{n+3}_{DK}(P_n\mathbf{S}, \pi_{n+1}\mathbf{S}) \\ \downarrow \\ \mathbf{A} \simeq P_0\mathbf{S} \longleftarrow P_1\mathbf{S} \longleftarrow P_2\mathbf{S} \longleftrightarrow \cdots \longleftarrow P_n\mathbf{S} \longleftarrow P_{n+1}\mathbf{S} \longleftrightarrow \cdots \longleftrightarrow \mathbf{S} = L\mathbf{M} \longleftrightarrow \mathbf{M} \\ \uparrow & \swarrow & \uparrow & \swarrow & \mathbf{M} \\ \text{translation functor } \Sigma & & & & \\ \text{and exact triangles} & & \text{axioms} & & & \pi_n\mathbf{S} = \operatorname{Hom}_{\mathbf{A}}(\Sigma^n, -) \colon \mathbf{A}^{op} \times \mathbf{A} \to \mathbf{Ab} \end{array}$$

- What kind of information does $P_n \mathbf{S}$ contain?
- Can one recover Σ and \mathcal{E} from $P_n \mathbf{S}$?
- Can one recover $K_m \mathbf{M}$ from $P_n \mathbf{S}$ for $n \gg m$?

Consider $\mathbf{M} = \mathbf{mod}(\mathbb{Z}/p^2)$ and $\mathbf{N} = \mathbf{mod}(\mathbb{Z}/p[t]/t^2)$, for $p \in \mathbb{Z}$ prime.

Consider $\mathbf{M} = \mathbf{mod}(\mathbb{Z}/p^2)$ and $\mathbf{N} = \mathbf{mod}(\mathbb{Z}/p[t]/t^2)$, for $p \in \mathbb{Z}$ prime. In both cases Ho $\mathbf{M} \simeq \operatorname{Ho} \mathbf{N} \simeq \mathbf{mod}(\mathbb{Z}/p)$,

and $\Sigma=1$ is the identity functor.

Consider $\mathbf{M} = \operatorname{mod}(\mathbb{Z}/p^2)$ and $\mathbf{N} = \operatorname{mod}(\mathbb{Z}/p[t]/t^2)$, for $p \in \mathbb{Z}$ prime. In both cases Ho $\mathbf{M} \simeq \operatorname{Ho} \mathbf{N} \simeq \operatorname{mod}(\mathbb{Z}/p)$,

and $\Sigma = 1$ is the identity functor. The first k-invariants are

 $k_1^{\mathbf{M}}, k_1^{\mathbf{N}} \in H^3(\mathbf{mod}(\mathbb{Z}/p), \mathrm{Hom})$

Consider $\mathbf{M} = \mathbf{mod}(\mathbb{Z}/p^2)$ and $\mathbf{N} = \mathbf{mod}(\mathbb{Z}/p[t]/t^2)$, for $p \in \mathbb{Z}$ prime. In both cases Ho $\mathbf{M} \simeq \operatorname{Ho} \mathbf{N} \simeq \mathbf{mod}(\mathbb{Z}/p)$,

and $\Sigma = 1$ is the identity functor. The first k-invariants are

 $k_1^{\mathbf{M}}, k_1^{\mathbf{N}} \in H^3(\mathbf{mod}(\mathbb{Z}/p), \mathrm{Hom}) \cong H^3_{ML}(\mathbb{Z}/p, \mathbb{Z}/p)$
Consider $\mathbf{M} = \operatorname{mod}(\mathbb{Z}/p^2)$ and $\mathbf{N} = \operatorname{mod}(\mathbb{Z}/p[t]/t^2)$, for $p \in \mathbb{Z}$ prime. In both cases Ho $\mathbf{M} \simeq \operatorname{Ho} \mathbf{N} \simeq \operatorname{mod}(\mathbb{Z}/p)$,

and $\Sigma = 1$ is the identity functor. The first k-invariants are

 $k_1^{\mathbf{M}}, k_1^{\mathbf{N}} \in H^3(\mathbf{mod}(\mathbb{Z}/p), \mathrm{Hom}) \cong H^3_{ML}(\mathbb{Z}/p, \mathbb{Z}/p) = 0,$

Consider $\mathbf{M} = \operatorname{mod}(\mathbb{Z}/p^2)$ and $\mathbf{N} = \operatorname{mod}(\mathbb{Z}/p[t]/t^2)$, for $p \in \mathbb{Z}$ prime. In both cases Ho $\mathbf{M} \simeq \operatorname{Ho} \mathbf{N} \simeq \operatorname{mod}(\mathbb{Z}/p)$,

and $\Sigma=1$ is the identity functor. The first k-invariants are

$$k_1^{\mathbf{M}}, k_1^{\mathbf{N}} \in H^3(\operatorname{mod}(\mathbb{Z}/p), \operatorname{Hom}) \cong H^3_{ML}(\mathbb{Z}/p, \mathbb{Z}/p) = 0,$$

therefore $P_1 L \mathbf{M} \simeq P_1 L \mathbf{N}$.

Consider $\mathbf{M} = \mathbf{mod}(\mathbb{Z}/p^2)$ and $\mathbf{N} = \mathbf{mod}(\mathbb{Z}/p[t]/t^2)$, for $p \in \mathbb{Z}$ prime. In both cases Ho $\mathbf{M} \simeq \operatorname{Ho} \mathbf{N} \simeq \mathbf{mod}(\mathbb{Z}/p)$,

and $\Sigma=1$ is the identity functor. The first k-invariants are

$$k_1^{\mathbf{M}}, k_1^{\mathbf{N}} \in H^3(\operatorname{mod}(\mathbb{Z}/p), \operatorname{Hom}) \cong H^3_{ML}(\mathbb{Z}/p, \mathbb{Z}/p) = 0,$$

therefore $P_1LM \simeq P_1LN$. However $LM \not\simeq LN$, [Schlichting, Toën-Vezzosi].

Consider $\mathbf{M} = \mathbf{mod}(\mathbb{Z}/p^2)$ and $\mathbf{N} = \mathbf{mod}(\mathbb{Z}/p[t]/t^2)$, for $p \in \mathbb{Z}$ prime. In both cases Ho $\mathbf{M} \simeq \operatorname{Ho} \mathbf{N} \simeq \mathbf{mod}(\mathbb{Z}/p)$,

and $\Sigma=1$ is the identity functor. The first k-invariants are

$$k_1^{\mathbf{M}}, k_1^{\mathbf{N}} \in H^3(\operatorname{\mathbf{mod}}(\mathbb{Z}/p), \operatorname{Hom}) \cong H^3_{ML}(\mathbb{Z}/p, \mathbb{Z}/p) = 0,$$

therefore $P_1LM \simeq P_1LN$. However $LM \not\simeq LN$, [Schlichting, Toën-Vezzosi].

• Is there any n for which $P_n L\mathbf{M} \not\simeq P_n L\mathbf{N}$?

Consider $\mathbf{M} = \mathbf{mod}(\mathbb{Z}/p^2)$ and $\mathbf{N} = \mathbf{mod}(\mathbb{Z}/p[t]/t^2)$, for $p \in \mathbb{Z}$ prime. In both cases Ho $\mathbf{M} \simeq \operatorname{Ho} \mathbf{N} \simeq \mathbf{mod}(\mathbb{Z}/p)$,

and $\Sigma = 1$ is the identity functor. The first k-invariants are

$$k_1^{\mathrm{M}}, k_1^{\mathrm{N}} \in H^3(\operatorname{mod}(\mathbb{Z}/p), \operatorname{Hom}) \cong H^3_{ML}(\mathbb{Z}/p, \mathbb{Z}/p) = 0,$$

therefore $P_1LM \simeq P_1LN$. However $LM \not\simeq LN$, [Schlichting, Toën-Vezzosi].

• Is there any n for which $P_n L\mathbf{M} \simeq P_n L\mathbf{N}$?

Notice that for any pair of objects A, B,

 $L\mathbf{M}(A, B) \simeq L\mathbf{N}(A, B)$!!!

Let C be a category. A C-bimodule M is a functor $M: \mathbb{C}^{op} \times \mathbb{C} \longrightarrow Ab$.

Let C be a category. A C-bimodule M is a functor $M: \mathbb{C}^{op} \times \mathbb{C} \longrightarrow Ab$.

Example. $\mathbb{Z}[\operatorname{Hom}_{\mathbf{C}}(-,-)]$.

Let C be a category. A C-bimodule M is a functor $M: \mathbb{C}^{op} \times \mathbb{C} \longrightarrow Ab$.

Example. $\mathbb{Z}[\operatorname{Hom}_{\mathbb{C}}(-,-)]$.

The Hochschild-Mitchell cohomology of ${f C}$ with coefficients in M is given by

$$H^*(\mathbf{C}, M) = \operatorname{Ext}^*_{\mathbf{C}\text{-bimod}}(\mathbb{Z}[\operatorname{Hom}_{\mathbf{C}}], M).$$

Let C be a category. A C-bimodule M is a functor $M: \mathbb{C}^{op} \times \mathbb{C} \longrightarrow Ab$.

Example. $\mathbb{Z}[\operatorname{Hom}_{\mathbb{C}}(-,-)]$.

The Hochschild-Mitchell cohomology of ${f C}$ with coefficients in M is given by

$$H^*(\mathbf{C}, M) = \operatorname{Ext}^*_{\mathbf{C}\text{-bimod}}(\mathbb{Z}[\operatorname{Hom}_{\mathbf{C}}], M).$$

A functor $\varphi \colon \mathbf{D} \to \mathbf{C}$ induces a homomorphism

$$\varphi^* \colon H^*(\mathbf{C}, M) \longrightarrow H^*(\mathbf{D}, \varphi^* M),$$

where $\varphi^* M = M(\varphi, \varphi)$.

This can be computed as the cohomology of a cobar-like complex $F^*(\mathbf{C}, M)$ where an *n*-cochain c is a function sending a chain of n composable morphisms in \mathbf{C}

$$A_0 \stackrel{\sigma_1}{\leftarrow} A_1 \leftarrow \cdots \leftarrow A_{n-1} \stackrel{\sigma_n}{\leftarrow} A_n$$

to an element

$$c(\sigma_1, \cdots, \sigma_n) \in M(A_n, A_0).$$

This can be computed as the cohomology of a cobar-like complex $F^*(\mathbf{C}, M)$ where an *n*-cochain c is a function sending a chain of n composable morphisms in \mathbf{C}

$$A_0 \stackrel{\sigma_1}{\leftarrow} A_1 \leftarrow \cdots \leftarrow A_{n-1} \stackrel{\sigma_n}{\leftarrow} A_n$$

to an element

$$c(\sigma_1, \cdots, \sigma_n) \in M(A_n, A_0).$$

If S is an S-category and M is a π_0 S bimodule then

$$H^*_{DK}(\mathbf{S}, M) = H^* \operatorname{diag} F^*(\mathbf{S}, M).$$

This can be computed as the cohomology of a cobar-like complex $F^*(\mathbf{C}, M)$ where an *n*-cochain c is a function sending a chain of n composable morphisms in \mathbf{C}

$$A_0 \stackrel{\sigma_1}{\leftarrow} A_1 \leftarrow \cdots \leftarrow A_{n-1} \stackrel{\sigma_n}{\leftarrow} A_n$$

to an element

$$c(\sigma_1, \cdots, \sigma_n) \in M(A_n, A_0).$$

If S is an S-category and M is a $\pi_0 \mathbf{S}$ bimodule then

$$H^*_{DK}(\mathbf{S}, M) = H^* \operatorname{diag} F^*(\mathbf{S}, M).$$

The universal Toda bracket of a stable model category ${f M}$ is the first k-invariant of $L{f M}$

$$k_1 \in H^3(\operatorname{Ho} \mathbf{M}, \operatorname{Hom}_{\operatorname{Ho} \mathbf{M}}(\Sigma, -)).$$

$$A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \stackrel{h}{\longrightarrow} D \qquad \qquad gf = 0, \ hg = 0.$$

$$b \in \langle h, g, f \rangle \in \frac{\mathbf{A}(\Sigma A, D)}{h\mathbf{A}(\Sigma A, C) + \mathbf{A}(\Sigma B, D)(\Sigma f)}.$$

Suppose that $(\mathbf{A}, \Sigma, \mathcal{E})$ is a triangulated category.

$$b \in \langle h, g, f \rangle \in \frac{\mathbf{A}(\Sigma A, D)}{h\mathbf{A}(\Sigma A, C) + \mathbf{A}(\Sigma B, D)(\Sigma f)}.$$

Example . $1_{\Sigma A} \in \langle q, i, f \rangle$.

Suppose that $(\mathbf{A}, \Sigma, \mathcal{E})$ is a triangulated category.

$$b \in \langle h, g, f \rangle \in \frac{\mathbf{A}(\Sigma A, D)}{h\mathbf{A}(\Sigma A, C) + \mathbf{A}(\Sigma B, D)(\Sigma f)}.$$

Example . $1_{\Sigma A} \in \langle q, i, f \rangle$. Actually it is immediate to see for $D = \Sigma A$ that the lower triangle is an exact triangle if and only if it is coexact and $1_{\Sigma A} \in \langle h, g, f \rangle$.

Example. $-1_{\Sigma B} \in \langle \Sigma f, q, i \rangle$,

Example. $-1_{\Sigma B} \in \langle \Sigma f, q, i \rangle$,

 $1_{\Sigma C_f} \in \langle \Sigma i, \Sigma f, q \rangle.$

Suppose that our triangulated category is $\mathbf{A} = \operatorname{Ho} \mathbf{M}$. Then $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$ with gf = 0, hg = 0, is the same as a functor

 $H^3(\mathbf{Toda}, \varphi^* \operatorname{Hom}_{\mathbf{A}}(\Sigma, -))$

Example. Let $free(S) \subset LSpectra$ be the full S-category of the simplicial localization of spectra given by

$$S \lor \cdots \lor \lor S, n \ge 0.$$

where S is the sphere spectrum.

Example. Let $free(S) \subset LSpectra$ be the full S-category of the simplicial localization of spectra given by

$$S \lor \cdots \lor S, n \ge 0.$$

where S is the sphere spectrum. All triple Toda brackets vanish in free(S).

Example. Let $free(S) \subset LSpectra$ be the full S-category of the simplicial localization of spectra given by

$$S \lor \cdots \lor S, n \ge 0.$$

where S is the sphere spectrum. All triple Toda brackets vanish in free(S). However, the universal Toda bracket of free(S) is the generator of

$$H^{3}(\operatorname{free}(\mathbb{Z}), \operatorname{Hom}(-, -\otimes \mathbb{Z}/2)) \cong H^{3}_{ML}(\mathbb{Z}, \mathbb{Z}/2) \cong \mathbb{Z}/2.$$

Let A be any additive category, $\Sigma \colon \mathbf{A} \xrightarrow{\sim} \mathbf{A}$ a self-equivalence, and $\theta \in H^3(\mathbf{A}, \operatorname{Hom}_{\mathbf{A}}(\Sigma, -))$ any cohomology class (which needs not be the universal Toda bracket of any stable model category).

Let A be any additive category, $\Sigma \colon \mathbf{A} \xrightarrow{\sim} \mathbf{A}$ a self-equivalence, and $\theta \in H^3(\mathbf{A}, \operatorname{Hom}_{\mathbf{A}}(\Sigma, -))$ any cohomology class (which needs not be the universal Toda bracket of any stable model category).

Let $\mathbb{I} = (0 \to 1)$ and let $[\mathbb{I}, \mathbf{A}]$ be the category of functors, called pairs. Objects are regarded as cochain complexes $d_A \colon A_0 \to A_1$ concentrated in dimensions 0 and 1.

Let A be any additive category, $\Sigma \colon \mathbf{A} \xrightarrow{\sim} \mathbf{A}$ a self-equivalence, and $\theta \in H^3(\mathbf{A}, \operatorname{Hom}_{\mathbf{A}}(\Sigma, -))$ any cohomology class (which needs not be the universal Toda bracket of any stable model category).

Let $\mathbb{I} = (0 \to 1)$ and let $[\mathbb{I}, \mathbf{A}]$ be the category of functors, called pairs. Objects are regarded as cochain complexes $d_A \colon A_0 \to A_1$ concentrated in dimensions 0 and 1. Consider the evaluation functor

 $ev \colon [\mathbb{I}, \mathbf{A}] \times \mathbb{I} \longrightarrow \mathbf{A}.$

Let A be any additive category, $\Sigma \colon \mathbf{A} \xrightarrow{\sim} \mathbf{A}$ a self-equivalence, and $\theta \in H^3(\mathbf{A}, \operatorname{Hom}_{\mathbf{A}}(\Sigma, -))$ any cohomology class (which needs not be the universal Toda bracket of any stable model category).

Let $\mathbb{I} = (0 \to 1)$ and let $[\mathbb{I}, \mathbf{A}]$ be the category of functors, called pairs. Objects are regarded as cochain complexes $d_A \colon A_0 \to A_1$ concentrated in dimensions 0 and 1. Consider the evaluation functor

$$ev \colon [\mathbb{I}, \mathbf{A}] \times \mathbb{I} \longrightarrow \mathbf{A}.$$

$$k_1 \in H^3(\mathbf{A}, \operatorname{Hom}_{\mathbf{A}}(\Sigma, -)) \xrightarrow{ev^*} H^3([\mathbb{I}, \mathbf{A}] \times \mathbb{I}, ev^* \operatorname{Hom}_{\mathbf{A}}(\Sigma, -))$$

Let A be any additive category, $\Sigma \colon \mathbf{A} \xrightarrow{\sim} \mathbf{A}$ a self-equivalence, and $\theta \in H^3(\mathbf{A}, \operatorname{Hom}_{\mathbf{A}}(\Sigma, -))$ any cohomology class (which needs not be the universal Toda bracket of any stable model category).

Let $\mathbb{I} = (0 \to 1)$ and let $[\mathbb{I}, \mathbf{A}]$ be the category of functors, called pairs. Objects are regarded as cochain complexes $d_A \colon A_0 \to A_1$ concentrated in dimensions 0 and 1. Consider the evaluation functor

$$ev \colon [\mathbb{I}, \mathbf{A}] \times \mathbb{I} \longrightarrow \mathbf{A}.$$

The image \bar{k}_1 of k_1 determines a linear extension called the category of homotopy pairs,

 $H^1 \operatorname{Hom}_{\mathbf{A}}(\Sigma, -) \hookrightarrow [\mathbb{I}, \mathbf{B}] \twoheadrightarrow [\mathbb{I}, \mathbf{A}].$

The image \bar{k}_1 of k_1 determines a linear extension called the category of homotopy pairs,

$$H^1 \operatorname{Hom}_{\mathbf{A}}(\Sigma, -) \hookrightarrow [\mathbb{I}, \mathbf{B}] \twoheadrightarrow [\mathbb{I}, \mathbf{A}].$$

For any two pairs d_A, d_B there is a short exact sequence

$$H^1 \operatorname{Hom}_{\mathbf{A}}(\Sigma d_A, d_B) \hookrightarrow [\mathbb{I}, \mathbf{B}](d_A, d_B) \twoheadrightarrow [\mathbb{I}, \mathbf{A}](d_A, d_B)$$
The image \bar{k}_1 of k_1 determines a linear extension called the category of homotopy pairs,

$$H^1 \operatorname{Hom}_{\mathbf{A}}(\Sigma, -) \hookrightarrow [\mathbb{I}, \mathbf{B}] \twoheadrightarrow [\mathbb{I}, \mathbf{A}].$$

For any two pairs d_A, d_B there is a short exact sequence

$$H^{1}\operatorname{Hom}_{\mathbf{A}}(\Sigma d_{A}, d_{B}) \hookrightarrow [\mathbb{I}, \mathbf{B}](d_{A}, d_{B}) \twoheadrightarrow [\mathbb{I}, \mathbf{A}](d_{A}, d_{B}) = H^{0}\operatorname{Hom}_{\mathbf{A}}(d_{A}, d_{B}).$$

In particular given a morphism $f \colon A \to B$ and an object X in A there is a long exact sequence

(S)
$$\mathbf{A}(\Sigma B, U) \xrightarrow{(\Sigma f)^*} \mathbf{A}(\Sigma A, X) \to [\mathbb{I}, \mathbf{B}](f, 0 \to X) \to \mathbf{A}(B, X) \xrightarrow{f^*} \mathbf{A}(A, X).$$

In particular given a morphism $f \colon A \to B$ and an object X in A there is a long exact sequence

(S)
$$\mathbf{A}(\Sigma B, U) \xrightarrow{(\Sigma f)^*} \mathbf{A}(\Sigma A, X) \to [\mathbb{I}, \mathbf{B}](f, 0 \to X) \to \mathbf{A}(B, X) \xrightarrow{f^*} \mathbf{A}(A, X)$$

Suppose that $[\mathbb{I},\mathbf{B}](f,0 o X)$ is representable as a functor in X,

 $[\mathbb{I}, \mathbf{B}](f, 0 \to X) \cong \operatorname{Hom}_{\mathbf{A}}(C_f, X).$

In particular given a morphism $f \colon A \to B$ and an object X in A there is a long exact sequence

(S)
$$\mathbf{A}(\Sigma B, U) \xrightarrow{(\Sigma f)^*} \mathbf{A}(\Sigma A, X) \to [\mathbb{I}, \mathbf{B}](f, 0 \to X) \to \mathbf{A}(B, X) \xrightarrow{f^*} \mathbf{A}(A, X)$$

Suppose that $[\mathbb{I},\mathbf{B}](f,0
ightarrow X)$ is representable as a functor in X,

$$[\mathbb{I}, \mathbf{B}](f, 0 \to X) \cong \operatorname{Hom}_{\mathbf{A}}(C_f, X).$$

Then (S) and Yoneda's lemma yield a triangle

(T)
$$A \xrightarrow{f} B \longrightarrow C_f \longrightarrow \Sigma A.$$

In particular given a morphism $f \colon A \to B$ and an object X in A there is a long exact sequence

(S)
$$\mathbf{A}(\Sigma B, U) \xrightarrow{(\Sigma f)^*} \mathbf{A}(\Sigma A, X) \to [\mathbb{I}, \mathbf{B}](f, 0 \to X) \to \mathbf{A}(B, X) \xrightarrow{f^*} \mathbf{A}(A, X)$$

Suppose that $[\mathbb{I},\mathbf{B}](f,0
ightarrow X)$ is representable as a functor in X,

$$[\mathbb{I}, \mathbf{B}](f, 0 \to X) \cong \operatorname{Hom}_{\mathbf{A}}(C_f, X).$$

Then (S) and Yoneda's lemma yield a triangle

(T)
$$A \xrightarrow{f} B \longrightarrow C_f \longrightarrow \Sigma A.$$

Theorem. For A = Ho M the triangles (T) are the exact triangles.

• Are there conditions on θ which imply that the triangles (T) induce a triangulated structure in A with translation functor Σ ?

• Are there conditions on θ which imply that the triangles (T) induce a triangulated structure in A with translation functor Σ ?

The situation when the triangles (T) define a triangulated structure is very convenient since, for example, cofibers are automatically functorial in the category [I, B]. One can also construct the differential d_2 of Adams spectral sequence **[Baues-Jibladze]**. . .

Consider the diagram

 \mathbf{A}^{Σ}

Consider the diagram

and the bimodule morphism

$$\overline{\Sigma} = -\Sigma \colon \operatorname{Hom}_{\mathbf{A}}(\Sigma, -) \longrightarrow \Sigma^* \operatorname{Hom}_{\mathbf{A}}(\Sigma, -) = \operatorname{Hom}_{\mathbf{A}}(\Sigma^2, \Sigma).$$

 \mathbf{A}^{Σ}

Consider the diagram

and the bimodule morphism

$$\overline{\Sigma} = -\Sigma \colon \operatorname{Hom}_{\mathbf{A}}(\Sigma, -) \longrightarrow \Sigma^* \operatorname{Hom}_{\mathbf{A}}(\Sigma, -) = \operatorname{Hom}_{\mathbf{A}}(\Sigma^2, \Sigma).$$

The diagram cohomology of Σ with coefficients in $\bar{\Sigma}$ can be obtained as

$$H^*(\Sigma, \bar{\Sigma}) = H^*\mathsf{Fib}\left(\Sigma^* - \bar{\Sigma}_* \colon F^*(\mathbf{A}, \operatorname{Hom}_{\mathbf{A}}(\Sigma, -)) \longrightarrow F^*(\mathbf{A}, \operatorname{Hom}_{\mathbf{A}}(\Sigma^2, \Sigma))\right).$$

 ${\rm A}^{\Sigma}$

Consider the diagram

and the bimodule morphism

$$\overline{\Sigma} = -\Sigma \colon \operatorname{Hom}_{\mathbf{A}}(\Sigma, -) \longrightarrow \Sigma^* \operatorname{Hom}_{\mathbf{A}}(\Sigma, -) = \operatorname{Hom}_{\mathbf{A}}(\Sigma^2, \Sigma).$$

The diagram cohomology of Σ with coefficients in $\bar{\Sigma}$ can be obtained as

$$H^*(\Sigma, \bar{\Sigma}) = H^* \mathsf{Fib}\left(\Sigma^* - \bar{\Sigma}_* \colon F^*(\mathbf{A}, \operatorname{Hom}_{\mathbf{A}}(\Sigma, -)) \longrightarrow F^*(\mathbf{A}, \operatorname{Hom}_{\mathbf{A}}(\Sigma^2, \Sigma))\right).$$

In particular there is a long exact sequence

$$\cdots \to H^{n}(\Sigma, \bar{\Sigma}) \xrightarrow{j} H^{n}(\mathbf{A}, \operatorname{Hom}_{\mathbf{A}}(\Sigma, -)) \xrightarrow{\Sigma^{*} - \bar{\Sigma}_{*}} H^{n}(\mathbf{A}, \operatorname{Hom}_{\mathbf{A}}(\Sigma^{2}, \Sigma)) \to H^{n+1}(\Sigma, \bar{\Sigma}) \to \cdots$$

In a triangulated category ${\bf A}$ the following formula for Toda brackets holds

$$\langle \Sigma h, \Sigma g, \Sigma f \rangle = -\Sigma \langle h, g, f \rangle.$$

In a triangulated category ${\bf A}$ the following formula for Toda brackets holds

$$\langle \Sigma h, \Sigma g, \Sigma f \rangle = -\Sigma \langle h, g, f \rangle.$$

This indicates that if A has a universal Toda bracket θ it is reasonable to think that

$$\Sigma^*\theta \quad = \quad \bar{\Sigma}_*\theta.$$

In a triangulated category ${\bf A}$ the following formula for Toda brackets holds

$$\langle \Sigma h, \Sigma g, \Sigma f \rangle = -\Sigma \langle h, g, f \rangle.$$

This indicates that if A has a universal Toda bracket θ it is reasonable to think that

$$\Sigma^*\theta \quad = \quad \bar{\Sigma}_*\theta.$$

In particular

$$\theta = j \nabla$$
, for some $\nabla \in H^3(\Sigma, \overline{\Sigma})$.

In a triangulated category \mathbf{A} the following formula for Toda brackets holds

$$\langle \Sigma h, \Sigma g, \Sigma f \rangle = -\Sigma \langle h, g, f \rangle.$$

This indicates that if A has a universal Toda bracket θ it is reasonable to think that

$$\Sigma^*\theta \quad = \quad \bar{\Sigma}_*\theta.$$

In particular

$$heta = j
abla,$$
 for some $abla \in H^3(\Sigma, \overline{\Sigma}).$

Remark. If A = Ho M the class ∇ is the first k-invariant of the simplicial endofunctor

 $\Sigma \colon L\mathbf{M} \longrightarrow L\mathbf{M}.$

In a triangulated category \mathbf{A} the following formula for Toda brackets holds

$$\langle \Sigma h, \Sigma g, \Sigma f \rangle = -\Sigma \langle h, g, f \rangle.$$

This indicates that if A has a universal Toda bracket θ it is reasonable to think that

$$\Sigma^*\theta \quad = \quad \bar{\Sigma}_*\theta.$$

In particular

$$heta = j
abla,$$
 for some $abla \in H^3(\Sigma, ar{\Sigma}).$

Remark. If $\mathbf{A} = \operatorname{Ho} \mathbf{M}$ the class ∇ is the first k-invariant of the simplicial endofunctor

$$\Sigma \colon L\mathbf{M} \longrightarrow L\mathbf{M}.$$

This k-invariant for diagrams is completely determined by $k_2 \in H^4(P_1L\mathbf{M}, \pi_2L\mathbf{M})$.

There is a Künneth spectral sequence for the computation of cohomology of products of diagrams of categories.

There is a Künneth spectral sequence for the computation of cohomology of products of diagrams of categories. This spectral sequence induces a filtration

$$D^{3,0} \subset D^{2,1} \subset D^{1,2} \subset D^{0,3} \subset H^3(\Sigma, \overline{\Sigma}).$$

There is a Künneth spectral sequence for the computation of cohomology of products of diagrams of categories. This spectral sequence induces a filtration

$$D^{3,0} \subset D^{2,1} \subset D^{1,2} \subset D^{0,3} \subset H^3(\Sigma, \overline{\Sigma}).$$

Theorem . [Baues-M.] In the conditions above if $\nabla \in D^{1,2}$ then **A** with the triangles (T) above satisfies all axioms except from the octahedral axiom.

There is a Künneth spectral sequence for the computation of cohomology of products of diagrams of categories. This spectral sequence induces a filtration

$$D^{3,0} \subset D^{2,1} \subset D^{1,2} \subset D^{0,3} \subset H^3(\Sigma, \overline{\Sigma}).$$

Theorem . [Baues-M.] In the conditions above if $\nabla \in D^{1,2}$ then **A** with the triangles (T) above satisfies all axioms except from the octahedral axiom. Moreover, if $\nabla \in D^{2,1}$ then the octahedral axiom is also satisfied and hence the triangles (T) yield a triangulated structure on **A**.

There is a Künneth spectral sequence for the computation of cohomology of products of diagrams of categories. This spectral sequence induces a filtration

$$D^{3,0} \subset D^{2,1} \subset D^{1,2} \subset D^{0,3} \subset H^3(\Sigma, \overline{\Sigma}).$$

Theorem . [Baues-M.] In the conditions above if $\nabla \in D^{1,2}$ then **A** with the triangles (T) above satisfies all axioms except from the octahedral axiom. Moreover, if $\nabla \in D^{2,1}$ then the octahedral axiom is also satisfied and hence the triangles (T) yield a triangulated structure on **A**.

Definition. A cohomologically triangulted category is a triple $(\mathbf{A}, \Sigma, \nabla)$ where \mathbf{A} is an additive category, $\Sigma \colon \mathbf{A} \xrightarrow{\sim} \mathbf{A}$ is a self-equivalence, and $\nabla \in H^3(\Sigma, \overline{\Sigma})$ satisfying the second condition in the Theorem, so that the universal Toda bracket $j\nabla \in H^3(\mathbf{A}, \operatorname{Hom}_{\mathbf{A}}(\Sigma, -))$ induces a triangulated structure in \mathbf{A} .

$$H^2(\operatorname{\mathbf{mod}}(\mathbb{Z}/p),\operatorname{Hom}) \stackrel{\Sigma^*-\bar{\Sigma}_*}{\longrightarrow} H^2(\operatorname{\mathbf{mod}}(\mathbb{Z}/p),\operatorname{Hom}) \longrightarrow H^3(\Sigma,\bar{\Sigma}) \longrightarrow 0$$

$$\begin{aligned} H^{2}(\operatorname{mod}(\mathbb{Z}/p), \operatorname{Hom}) & \stackrel{\Sigma^{*} - \bar{\Sigma}_{*}}{\longrightarrow} H^{2}(\operatorname{mod}(\mathbb{Z}/p), \operatorname{Hom}) & \longrightarrow H^{3}(\Sigma, \bar{\Sigma}) & \longrightarrow 0 \\ & \cong \uparrow & \cong \uparrow \\ & H^{2}_{ML}(\mathbb{Z}/p, \mathbb{Z}/p) & \stackrel{2}{\longrightarrow} H^{2}_{ML}(\mathbb{Z}/p, \mathbb{Z}/p) \end{aligned}$$

$$\begin{array}{ccc} H^{2}(\operatorname{mod}(\mathbb{Z}/p), \operatorname{Hom}) & \stackrel{\Sigma^{*} - \bar{\Sigma}_{*}}{\longrightarrow} H^{2}(\operatorname{mod}(\mathbb{Z}/p), \operatorname{Hom}) & \longrightarrow & H^{3}(\Sigma, \bar{\Sigma}) & \longrightarrow & 0 \\ & \cong & \uparrow & & \cong & \uparrow \\ & H^{2}_{ML}(\mathbb{Z}/p, \mathbb{Z}/p) & \stackrel{2}{\longrightarrow} & H^{2}_{ML}(\mathbb{Z}/p, \mathbb{Z}/p) \\ & \cong & \uparrow & & \cong & \uparrow \\ & \mathbb{Z}/p & \stackrel{2}{\longrightarrow} & \mathbb{Z}/p \end{array}$$

Consider $\mathbf{M} = \mathbf{mod}(\mathbb{Z}/p^2)$ and $\mathbf{N} = \mathbf{mod}(\mathbb{Z}/p[t]/t^2)$. Recall that in both cases the homotopy category is $\mathbf{A} = \mathbf{mod}(\mathbb{Z}/p)$, the suspension functor is the identity $\Sigma = 1$, and $k_1 = 0$. What happens with ∇ ?

$$\begin{array}{ccc} H^{2}(\operatorname{mod}(\mathbb{Z}/p), \operatorname{Hom}) & \stackrel{\Sigma^{*} - \bar{\Sigma}_{*}}{\longrightarrow} H^{2}(\operatorname{mod}(\mathbb{Z}/p), \operatorname{Hom}) & \longrightarrow & H^{3}(\Sigma, \bar{\Sigma}) & \longrightarrow & 0 \\ & \cong & \uparrow & & \cong & \uparrow \\ & H^{2}_{ML}(\mathbb{Z}/p, \mathbb{Z}/p) & \stackrel{2}{\longrightarrow} & H^{2}_{ML}(\mathbb{Z}/p, \mathbb{Z}/p) \\ & \cong & \uparrow & & \cong & \uparrow \\ & \mathbb{Z}/p & \stackrel{2}{\longrightarrow} & \mathbb{Z}/p \end{array}$$

Therefore

$$H^{3}(\Sigma, \bar{\Sigma}) = \begin{cases} \mathbb{Z}/2, & p = 2, \\ 0, & p \neq 2. \end{cases}$$

For p = 2 one can check that $\nabla^{N} = 0$ and $\nabla^{M} \neq 0$, hence the cohomologically triangulated structures associated to $\mathbf{M} = \mathbf{mod}(\mathbb{Z}/p^{2})$ and $\mathbf{N} = \mathbf{mod}(\mathbb{Z}/p[t]/t^{2})$ are different

 $(\mathbf{mod}(\mathbb{Z}/2), \Sigma, 1), \quad (\mathbf{mod}(\mathbb{Z}/2), \Sigma, 0), \text{ respectively,}$

and $k_2^{\mathbf{M}} \neq k_2^{\mathbf{N}}$.

