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e Which is the right filler?

Triangles vs. cofibers

.. while in a triangulated category . . .
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An example

Consider M = mod(Z/p*) and N = mod(Z/p[t]/t*), for p € Z prime. In both cases
HoM ~ HoN ~ mod(Z/p),
and > = 1 is the identity functor. The first k-invariants are
k', ky € H*(mod(Z/p), Hom) = H},, (Z/p,Z/p) =0,

therefore P, LM ~ P;LN. However LM # LN, [Schlichting, Toén-Vezzosi].
e Is there any n for which P,LM # P, LN?

Notice that for any pair of objects A, B,

LM(A, B) ~ LN(A, B) Il
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Let C be a category. A C-bimodule M is a functor M : C? x C — Ab.
Example . Z[Homc(—, —)].
The Hochschild-Mitchell cohomology of C with coefficients in M is given by

H*(C7 M) — EXtE—bimod(Z[HomC]v M) .

A functor ¢o: D — C induces a homomorphism
@ : H(C,M) — H" (D, p"M),

where "M = M (p, p).



Cohomology of categories

This can be computed as the cohomology of a cobar-like complex F*(C, M) where an n-cochain
c is a function sending a chain of n composable morphisms in C

o1 o)
A0<_A1<_"°<_An—1<_nAn

to an element
c(o1,- -+ ,0n) € M(A,, Ao).



Cohomology of categories

This can be computed as the cohomology of a cobar-like complex F*(C, M) where an n-cochain
c is a function sending a chain of n composable morphisms in C

Ag Ay — - = A, 4,
to an element
c(o1,- -+ ,0n) € M(A,, Ao).

If S is an S-category and M is a myS bimodule then

Hp,. (S, M) = H"diagF"(S,M).



Cohomology of categories

This can be computed as the cohomology of a cobar-like complex F*(C, M) where an n-cochain
c is a function sending a chain of n composable morphisms in C

Ag & Ay e oo Ay A,
to an element
c(o1,- -+ ,0n) € M(A,, Ao).

If S is an S-category and M is a mpS bimodule then

Hp,. (S, M) = H"diagF"(S,M).

The universal Toda bracket of a stable model category M is the first k-invariant of LM

ki € H?(HoM, Hompuom(Z, —)).
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Suppose that (A, X, £) is a triangulated category.

f i q
A%B%CfHEA

b, L L

A— B — C — D gf =0, hg =0.

A(ZA, D)
hA(XA,C)+ A(ZB,D)(Zf)

be (h,g, f) €

Example . 1s4 € {(q,1, f). Actually it is inmediate to see for D = 3 A that the lower triangle
is an exact triangle if and only if it is coexact and 1x4 € (h, g, f).
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Example . —1sp € (Xf,q,1),
i q —2f
B — Cf — YA — XB

B—Cy — YA — ¥B

e, € (¥4, 2, q).
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Toda brackets

Suppose that our triangulated category is A = HoM. Then A LB C % D with gf =0,
hg = 0, is the same as a functor

©*k1 € H?(Toda, ¢* Homy (X, —))

A(SA,D)
(h,g, f) S hA(SA,C)+A(SB,D) (%))

[Baues-Dreckmann]
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Example . Let free(S) C LSpectra be the full S-category of the simplicial localization of
spectra given by

SV VS, n>0.

where S is the sphere spectrum. All triple Toda brackets vanish in free(S). However, the universal
Toda bracket of free(S) is the generator of

H?(free(Z), Hom(—, — ® Z/2)) = H]?QL(Z, Z/2) =2 Z)2.
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Detecting the exact triangles

Let A be any additive category, 3: A = A a self-equivalence, and § € H*(A, Homy (2, —))
any cohomology class (which needs not be the universal Toda bracket of any stable model

category).

Let I = (0 — 1) and let [I, A] be the category of functors, called pairs. Objects are regarded as
cochain complexes d4: Ay — A1 concentrated in dimensions O and 1. Consider the evaluation

functor
ev: [[A] x I — A.

*

ki € H*(A, Homa (S, —)) — H3([I, A] x I, ev* Homa (2, —))

l Kiunneth SS

ki € H*([I, A], H Homa (2, —))
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The image k, of ky determines a linear extension called the category of homotopy pairs,
H'Homy (2, —) — [I,B] — [I, A].
For any two pairs d 4, dp there is a short exact sequence

H'Homyu (2da, d) — [I,B](da, ds) — [I, Al(da, ds) = H’ Homa(d4, d5).
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Detecting the exact triangles

In particular given a morphism f: A — B and an object X in A there is a long exact sequence

5)  AEB,U)H ARA, X) = [LB](f,0 — X) — A(B, X) 15 A(A, X).
Suppose that [[, B](f,0 — X)) is representable as a functor in X,

I, B](f,0 - X) = Homa (Cy, X).
Then (S) and Yoneda's lemma yield a triangle

(T) A-L.B— ¢ — zA.

Theorem . For A = Ho M the triangles (T) are the exact triangles.
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Detecting the exact triangles

e Are there conditions on 8 which imply that the triangles (T) induce a triangulated structure in
A with translation functor X7

The situation when the triangles (T) define a triangulated structure is very convenient since, for
example, cofibers are automatically functorial in the category [I, B]. One can also construct the
differential do of Adams spectral sequence [Baues-Jibladze]. . .
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Cohomology of diagrams

Consider the diagram

QZ

and the bimodule morphism
S = —2: Homa(Z, —) — " Homa (Z, —) = Homa (2%, 2).
The diagram cohomology of ¥ with coefficients in 3 can be obtained as
H*(2,$) = H'Fib (2* _ 5, F*(A, Homa(Z, —)) — F*(A, Homa (22, 2))) .
In particular there is a long exact sequence

L H'(E,E) L H(A, Homa(Z, —)) 3% H"(A, Homa (2%, %)) — H™"(Z,5) — -



Cohomology of diagrams

In a triangulated category A the following formula for Toda brackets holds

(Zh,Eg,Ef) — _Z<hagaf>



Cohomology of diagrams

In a triangulated category A the following formula for Toda brackets holds
<Zh7zg72f> — _Z<h7g7f>‘
This indicates that if A has a universal Toda bracket 6 it is reasonable to think that

>0 = %,0.



Cohomology of diagrams

In a triangulated category A the following formula for Toda brackets holds
(Xh,Xg,2f) = —3(h,g,f).
This indicates that if A has a universal Toda bracket 6 it is reasonable to think that
¥ = 3.0.
In particular

0 = jV, forsomeV € H*(Z,5).



Cohomology of diagrams

In a triangulated category A the following formula for Toda brackets holds
(Xh,Xg,2f) = —3(h,g,f).
This indicates that if A has a universal Toda bracket 6 it is reasonable to think that
¥ = 3.0.
In particular

6 = jV, forsomeV € H*(Z,%).

Remark . [f A = Ho M the class V is the first k-invariant of the simplicial endofunctor

>.: LM — LM.



Cohomology of diagrams

In a triangulated category A the following formula for Toda brackets holds
(Xh,Xg,2f) = —3(h,g,f).
This indicates that if A has a universal Toda bracket 6 it is reasonable to think that
¥ = 3.0.
In particular

6 = jV, forsomeV € H*(Z,%).

Remark . [f A = Ho M the class V is the first k-invariant of the simplicial endofunctor
>: LM — LM.

This k-invariant for diagrams is completely determined by ko € H 4(P1 LM, wo LM).
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The conditions

There is a Kiinneth spectral sequence for the computation of cohomology of products of diagrams
of categories. This spectral sequence induces a filtration

D>’ c D*' ¢ D" c D"’ c H’(Z,%).

Theorem . [Baues-M.] In the conditions above if V € D"* then A with the triangles (T) above
satisfies all axioms except from the octahedral axiom. Moreover, if V & D?1 then the octahedral
axiom is also satisfied and hence the triangles (T) yield a triangulated structure on A.

Definition . A cohomologically triangulted category is a triple (A, 3, V) where A is an additive
category, X: A 5 A is a self-equivalence, and V € H®(X,X) satisfying the second condition
in the Theorem, so that the universal Toda bracket jV € H?(A,Homa (X, —)) induces a
triangulated structure in A.
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The last example

Consider M = mod(Z/p*) and N = mod(Z/p[t]/t*). Recall that in both cases the homotopy
category is A = mod(Z/p), the suspension functor is the identity > = 1, and k1 = 0. What
happens with V7?7

H2(mod(Z/p), Hom) — H2(mod(Z/p), Hom) — H*(Z,S) — 0

Therefore
Z/2, p=2,

3 S



The last example

For p = 2 one can check that VY = 0 and V™ # 0, hence the cohomologically triangulated
structures associated to M = mod(Z/p*) and N = mod(Z/p[t]/t?) are different

(mod(Z/2),%,1), (mod(Z/2),3,0), respectively,

and k' # k3.



The End

Thanks for your attention!



