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n-angulated categories

Defined by Geiss, Keller, and Oppermann, 2013.

A 3-angulated category is a triangulated category.

No higher categories.

Just longer ‘triangles’ called n-angles

Xn
fn−→ Xn−1

fn−1−→ · · · f2−→ X1
f1−→ ΣXn.
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n-angulated categories

An n-angulated category is an additive category C equipped
with a self-equivalence

Σ: C ∼−→ C,

called suspension, and a class of diagrams

Xn
fn−→ Xn−1

fn−1−→ · · · f2−→ X1
f1−→ ΣXn,

called exact n-angles, satisfying the following axioms.
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n-angulated categories

Exact n-angles are closed under direct sums, direct summands,
and isomorphisms.

The following trivial n-angle is exact

A idA−→ A −→ 0 −→ · · · −→ 0 −→ ΣA.

Any morphism fn : Xn → Xn−1 is the base of an exact n-angle

Xn
fn−→ Xn−1

fn−1−→ · · · f2−→ X1
f1−→ ΣXn.

An n-angle is exact if and only if its rotation is exact,

Xn−1
fn−1−→ · · · f2−→ X1

f1−→ ΣXn
(−1)nΣfn−→ ΣXn−1.
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n-angulated categories

Any commutative square between the bases of two exact
n-angles extends to a morphism of n-angles

Xn Xn−1 Xn−2 · · · X1 ΣXn

Yn Yn−1 Yn−2 · · · Y1 ΣYn

fn

ϕn

fn−1

ϕn−1

fn−2

ϕn−2

f2

ϕ1

f1

Σϕn

gn gn−1 gn−2 g2 g1

This can be done in such a way that the mapping cone is exact

Xn−1 ⊕ Yn

(−fn−1 0
ϕn−1 gn

)
−→ Xn−2 ⊕ Yn−1

(
−fn−2 0
ϕn−2 gn−1

)
−→ · · ·

· · ·

(−f1 0
ϕ1 g2

)
−→ ΣXn ⊕ Y1

(
−Σfn 0
Σϕn g1

)
−→ ΣXn−1 ⊕ ΣYn.
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n-angulated subcategories of triangulated categories

Let T be a small idempotent-complete triangulated category
with suspension Σ and C ⊂ T a full subcategory closed under
direct sums and summands satisfying:

• Σn−2C = C.
• T (X,ΣiY) = 0 for X, Y ∈ C and (n− 2) - i.
• T = 〈C〉.

The condition on idempotents is not strong by Balmer and
Schlichting, 2001; Lin, 2021.
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n-angulated subcategories of triangulated categories

We equip C with the suspension Σn−2 and consider the
n-angles in C fitting in a diagram in T with exact and
commutative triangles

Xn−1 Xn−2 · · · X2

Xn Xn−2.5 Xn−3.5 · · · X2.5 X1

fn−1

f2fn

+1 +1 +1

f1

We say that C ⊂ T is a generating n-angulated subcategory if it
is an n-angulated category with these exact n-angles.
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n-angulated subcategories of triangulated categories

Theorem [Geiss, Keller, and Oppermann, 2013]

Let T be a triangulated category and C ⊂ T an (n− 2)-cluster
tilting subcategory, in the sense of Iyama and Yoshino, 2008,
satisfying Σn−2C = C. Then C ⊂ T is an n-angulated
subcategory.

Any object X ∈ T can be inductively constructed from C in
n− 2 steps by means of exact triangles

Σi−1Ci −→ Xi−1 −→ Xi −→ ΣiCi, 0 ≤ i ≤ n− 3,

with X−1 = 0, Xn−3 = X, and Ci ∈ C.
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Enhanced n-angulated categories

An enhanced n-angulated category A is a DG-category such
that the Yoneda inclusion

H0(A) −→ Dc(A),

X 7→ A(−, X),

is the inclusion of an n-angulated subcategory.

This extends Bondal and Kapranov, 1991 for n = 3.
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Enhanced n-angulated categories

An n-angulated category C is algebraic if C ' H0(A) for some
enhanced n-angulated category A.

This extends Keller, 2007 for n = 3. Compare Jasso, 2016.

Proposition

If T is an algebraic triangulated category and C ⊂ T is an
n-angulated subcategory then C is also algebraic.

There are non-algebraic examples in Bergh, Jasso, and Thaule,
2016 based in Muro, Schwede, and Strickland, 2007.
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n-angulated categories and self-injective algebras

Let Λ be a finite-dimensional basic self-injective algebra and

σ−1Λ1 ↪→ Pn → · · · → P1 � Λ

an extension of Λ-bimodules with σ : Λ ∼= Λ an automorphism
and projective-injective middle terms, i.e. ΩnΛenvΛ ∼= σ−1Λ1 stably.

The functor
−⊗Λ σΛ1 : proj(Λ)

∼−→ proj(Λ)

is an equivalence with inverse −⊗Λ σ−1Λ1.
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n-angulated categories and self-injective algebras

Theorem [Lin, 2019]

In the previous setting, the category proj(Λ) equipped with the
suspension functor −⊗Λ σΛ1 and the exact n-angles described
below is n-angulated.

This extends Amiot, 2007 for n = 3.

If proj(Λ) is n-angulated then Λ is self-injective by Geiss, Keller,
and Oppermann, 2013.
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n-angulated categories and self-injective algebras

An n-angle in proj(Λ) is exact if the extended sequence is exact

Xn
fn−→ Xn−1

fn−1−→ · · · f2−→ X1
f1−→ Xn ⊗Λ σΛ1

fn⊗ΛσΛ1−→ Xn−1 ⊗Λ σΛ1

and the induced extension

M⊗Λ σ−1Λ1 ↪→ Xn
fn−→ Xn−1

fn−1−→ · · · f2−→ X1 � M,

with M = coker f2 = ker fn ⊗Λ σΛ1, is equivalent to

M⊗Λ (σ−1Λ1 ↪→ Pn → · · · → P1 � Λ).
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Existence and uniqueness of n-angulated enhancements

Theorem

Let Λ be a finite-dimensional basic self-injective algebra over a
perfect field.

1. proj(Λ) is an algebraic n-angulated category if and only if
ΩnΛenvΛ

∼= σ−1Λ1 stably for some automorphism σ.
2. The possible suspension functors are −⊗Λ σΛ1.
3. If we fix the suspension functor, there is a unique
n-angulated enhancement up to quasi-equivalence.
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Applications

Corollary

Let T be an idempotent-complete algebraic triangulated
category over a perfect field with a basic (n− 2)-cluster tilting
object C satisfying Σn−2C = C. The associated (n− 2)-cluster
tilting subcategory C ⊂ T , which is n-angulated by Geiss, Keller,
and Oppermann, 2013, is algebraic and has an essentially
unique enhancement.

In this case C = proj(T (C, C)).
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Applications

Corollary

Let T be an idempotent-complete algebraic triangulated
category over a perfect field with a basic (n− 2)-cluster tilting
object C satisfying Σn−2C = C. Then T has a unique
enhancement up to Morita equivalence.
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Applications

Proof.

Let C ⊂ T be the completion of C by direct sums and direct
summands.

If A is a 3-angulated enhancement of T = H0(A) then the full
sub-DG-category B ⊂ A spanned by the objects of C is an
n-angulated enhancement of C.

Since T = 〈C〉, A is the enhanced triangulated envelope of B in
the sense of Bondal and Kapranov, 1991. Hence, the
uniqueness of B implies the uniqueness of A.
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Applications

If T is a triangulated category and C ⊂ T is an n-angulated
subcategory, we say that T is a triangulated envelope of the
n-angulated category C.

Corollary

Let Λ be a finite-dimensional basic self-injective algebra over a
perfect field. If C = proj(Λ) is n-angulated then it has an
essentially unique algebraic triangulated envelope T and
C ⊂ T is (n− 2)-cluster tilting.
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How to prove the main theorem

Let Λ be a finite-dimensional basic self-injective algebra and

σ−1Λ1 ↪→ Pn → · · · → P1 � Λ

an extension of Λ-bimodules with σ : Λ ∼= Λ an automorphism
and projective-injective middle terms, i.e. ΩnΛenvΛ ∼= σ−1Λ1 stably.

If A is an enhancement of proj(Λ) = H0(A) then

H∗A(Λ,Λ) = Λ(σ) :=
Λ〈t±1〉

(tλ− σ(λ)t)
, |t| = 2− n.
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How to prove the main theorem

Quasi-equivalence classes of enhancements of proj(Λ) are in
bijection with gauge equivalence classes of certain minimal
A∞-algebra structures on Λ(σ), given by degree 2− i operations

mi : Λ(σ)⊗
i· · · ⊗Λ(σ) −→ Λ(σ), i ≥ 3,

satisfying certain equations.
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How to prove the main theorem

The first possibly non-trivial operation defines a Hochschild
cohomology class

{mn} ∈ HHn,2−n(Λ(σ),Λ(σ)).

The restriction along the inclusion Λ ⊂ Λ(σ) of the degree 0
part

{mn}|Λ ∈ HHn(Λ, σ−1Λ1) = ExtnΛenv(Λ, σ−1Λ1)

must be a representative of the previous bimodule extension.
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How to prove the main theorem

We show that there exists a unique class

x ∈ HHn,2−n(Λ(σ),Λ(σ))

restricting to the given extension in ExtnΛenv(Λ, σ−1Λ1) and
satisfying

[x, x]
2

= 0 ∈ HH2n−1,2(2−n)(Λ(σ),Λ(σ)).

This is the first obstruction to the extension of a cocycle mn

representing x to an A∞-algebra structure.
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How to prove the main theorem

Higher obstructions live in the subsequent pages a spectral
sequence with

Epq2 = HHp+2,q(Λ(σ),Λ(σ)), p > 0,

a posteriori converging to the homotopy groups of the moduli
space of enhancements.

The given extension is a unit in Hochschild–Tate cohomology

ĤH
∗,∗

(Λ,Λ(σ)).

This is used to prove that the spectral sequence collapses in
the third page and all remaining obstructions vanish.
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That’s all folks!

Thanks for your attention!
,
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