

Poisson manifold (M, T)

$\pi \in \Gamma(\lambda^{2}T(\Pi)) \quad \text{s.t.} \quad [\pi,\pi] = 0 \quad \text{in} \quad \Gamma(\lambda^{*}T(\Pi))$

- Givector field Oersteuhaber algebre of poly vector fields
- The interior product (contraction) [a,bc]=[a,b]c±b[a,c] + compatibility
 - $i_{\mathbf{n}}: \Omega(\mathbf{n}) \longrightarrow \Omega(\mathbf{n}) \quad \Omega(\mathbf{n}) = \Gamma(\mathbf{x}^* \mathbf{T}^*(\mathbf{n}))$
- is a differential operator
- of degree -2 and order =2

de Rham complex (commutative algebra) differential forms

- A commutative algebra over a field to of chan k=0
- M, N A-modules
- Differential operator \$ 17 -> N of order < m:
 - $M = -1 \phi = 0$
 - M20 the operator [0/[]: A --->A
 - is a differential operator of order ≤ m-1 dacA
- Example: N= 0 A enocente unorphism
 - \$ + A mittel + Leibniz ⇒ order ≤ 1
 - if \$ (1) = 0 usualization

(M, π) Poisson manifold $\Delta := [i_{\pi}, d] = i_{\pi} d - di_{\pi} : \Omega(\Pi) \longrightarrow \Omega(\Pi)$

- Batalin Vilkovisky operator
- is a differential operator of degree -1 and order =2
- Batalin Vilkovisty (BV) algebra
 - = commentatione algebra
 - + differential operator & of dagree I and order < 2
- Example: 2(17)

Kozul bracket

$[x,y] = \Delta (xy) - \Delta (x)y - (-1)^{|x|} \times \Delta (y)$ deviation from Leibuit rule

I2(17) Coers tenhaber algebre.

[-,-]: H*(17) & H*(17) -> H*(17) Lie [a,]

But $\Delta = 0$ on $H^*(M) \Rightarrow H^*(M)$ abelian Lie abelia

Theorem [Sharygin and Tolacher '08] The Lie algebra I2(17) is formal

Crollary The Lie algebra S2(17) is houstopy abelian in the Lo sense

What an we say about I2 (11) as a BV -algebra?

(It's not formal, not even as a commutative algebra)

To which extent is A homotopically trivial?

- [Drunnword-Cole Vallette 13,
 - Khorpshkin Markanan Shadrin 13,
 - Dotsento-Shadnin-Vallette 15]
 - Therew:
 - BNID is formal and H*(BNID) = Hypercom
 - Therew:
 - Ω(Π) is a BN/A algebra for (M, π) Poisson

Kosme opered

- manifold and hance a hypercommutative algebra
- Corollary:
 - H*(17) is an Ho-algebra or-queri-itourpluc to I2(17)

Hypercommutatione algebra A:

M. A & M & A -- > A M72

 $|w_{\mu}| = 2(2-k)$

men totally sympetic

such that for each ac A the operation

 $\mu_{\alpha}: A \otimes A \longrightarrow A \qquad \mu_{\alpha}(x,y) := \sum_{\mu=2}^{\infty} \frac{1}{(\mu-2)!} M_{\mu}(x,y,\alpha,\dots,\alpha)$

is associative. In particular (A, m2) is the underlying communitative algebra.

BN 10 - algebra A is a BN - algebra equipped with:

\$1 = in and \$u=0, M >2

A hypercommutative algebra A is trivial of it reduces to the underlying communtative algebra (A, Mr) i.e. Ma=0 for M72

Opera dically:

H ---> Com --> End (A)

MAZ - M generation

M>Z MM H >O

Main theorem:

The provious hypercommutative algebra structure on 22(11) is quasi isomorphic to the tinial one.

One can cimilarly say that :

- · A BN-algebra is trivial if D=0
- . A Constanhaber algebra is trivial if
 - its underlying Lie algebra is abelian

Corollary:

The privious BV and bustenhaba algebra

structures on 2(11) are quari isomorphic

to the tinial ones.

The opened waps

induce

- so we also have a notion of trivial H & algebra
- Corollary:
- The privious Hos algebra structure on H*(17) is so isomorphic to the finial one.

And similarly for 131 00 and 500.

Exact Batalin - Vilkovisty algebra

- = commetive algebra
 - + differential operator i of dagree -2 and order < 2
 - + [i, [i, d]] = 0
- Example: I2(11) with i= in

Theorem:

the operad map Com -> EBV is a quari-isomorphism.

Tedmical Auren: weished Free gread on ~ Z * - module C

operedic ideal (S) C 2h contection: In1=-1, dh+hd=1, h=0

9 ph extension such that h(0) =0

 $h(x \circ y) = \frac{w(x)}{w(x) + w(y)} h(x) \circ y + (-1)^{1 \times 1} \frac{w(y)}{w(x) + w(y)} \times o h(y)$

$EBV = Com \amalg F(C)/(S)$ with

- C is the complex h
 - ---- 0 -> K·i -> K·d(i) -> 0 -> ···
- concentrated in arity 1
- S has two element: $h(1) = h(2) = 0 \in (S)$
 - 1. idii) diisi weiget 2
 - 2. $(\mu^2 \circ i) \cdot [() + (1 2) + (1 23)] + i \mu^2$ weight 1
 - + $\mu_{2}(i\mu) \cdot [() + (23) + (132)]$

S: O → Q factors as Any operad map

Suppose & is an injective quari-ito.

Com we always got In and S satisfying the theorem?