

Max-Planck Institut für Mathematik, Bonn, Germany

Abstract

Waldhausen's K-theory of a category C with cofibrations and weak equivalences (see [5, 6]) extends the classical notions of the K-theory of rings, additive categories and exact categories.

In this poster we present a new algebraic model $\mathcal{D}_*\mathbf{C}$ for the 1-type $P_1K\mathbf{C}$ of the Waldhausen *K*-theory spectrum *K*C. The object \mathcal{D}_*C is a *stable quadratic module* [1], and consists of a diagram of groups

in which the bottom row is exact.

Equivalently, \mathcal{D}_*C can be thought of as a strict symmetric monoidal category in which all the objects are strictly invertible with respect to the monoidal structure.

Our model \mathcal{D}_*C is defined by a presentation in terms of generators and relations in the spirit of Nenashev, who gave a model for K_1 of an exact category in [3]. The important features of $\mathcal{D}_*\mathbf{C}$ are the following:

- It is *small*, as it has generators given by the objects, the weak equivalences and the cofiber sequences of the category C.
- It has *minimal nilpotency degree*, since the groups $\mathcal{D}_0 \mathbf{C}$ and $\mathcal{D}_1 \mathbf{C}$ have nilpotency class two.
- It encodes the 1-type in a *functorial* way, and there is a bijection between the homotopy classes of morphisms $P_1K\mathbf{C} \to P_1K\mathbf{D}$ and of morphisms $\mathcal{D}_*\mathbf{C} \to \mathcal{D}_*\mathbf{D}$.

Stable quadratic modules

A stable quadratic module C_* is a diagram of group homomorphisms

$$C_0^{ab} \otimes C_0^{ab} \xrightarrow{\langle -, - \rangle} C_1 \xrightarrow{\partial} C_0$$

such that

$$\partial \langle c_0, d_0 \rangle = [d_0, c_0],$$

$$\langle \partial (c_1), \partial (d_1) \rangle = [d_1, c_1],$$

$$\langle c_0, d_0 \rangle + \langle d_0, c_0 \rangle = 0.$$

Here $(-)^{ab}$ is abelianization and [a, b] = -a - b + a + b is the commutator.

Let $C_0 \ltimes C_1$ be the semidirect product group, where C_0 acts on C_1 by

$$c_1 \cdot c_0 = c_1 + \langle c_0, \partial c_1 \rangle.$$

A stable quadratic module can be regarded as a monoidal category with object set C_0 and morphisms given by elements of $C_0 \ltimes C_1$,

$$(c_0, c_1): c_0 \longrightarrow c_0 + \partial(c_1).$$

The group structures on C_0 and $C_0 \ltimes C_1$ induce a symmetric monoidal structure with symmetry isomorphism given by the bracket $\langle -, - \rangle$,

$$(c_0 + d_0, \langle c_0, d_0 \rangle) \colon c_0 + d_0 \longrightarrow d_0 + c_0.$$

The *classifying spectrum* of a symmetric monoidal category is defined by Segal in [4]. In the case of a stable quadratic module a simpler construction can be derived from [2].

For the proof of our theorem it is also important to note that a stable quadratic module C_* is a particular case of a commutative monoid in the category of *crossed complexes*. Indeed, we obtain $\mathcal{D}_*\mathbf{C}$ as the quotient of such a monoid $\mu \colon \Pi \otimes \Pi \to \Pi$ by the relations

$$\mu(a\otimes [b,c]) = 0 \quad \text{and} \quad d = 0$$

for all $a, b, c \in \Pi_1$ and $d \in \Pi_{>3}$.

The 1-type of a Waldhausen K-Theory Spectrum

Fernando Muro

muro@mpim-bonn.mpg.de

Waldhausen's S_{\bullet} construction

Let C be a Waldhausen category with zero object *. We denote the cofiber sequences and weak equivalences respectively by

$$A \rightarrow B \rightarrow B/A, \qquad A - A$$

Waldhausen defined the K-theory of C as the homotopy of a certain simplicial category $wS_{\bullet}C$ (or that of the diagonal of the bisimplicial set $X_{\bullet,\bullet}$ given by the nerve of this simplicial category.)

Figure 1: Elements $\sigma_{2,1}$ and $\sigma_{3,0}$ in the nerve $X_{\bullet,\bullet}$ of $wS_{\bullet}C_{\bullet}$.

A small presentation for K_0 and K_1

Definition \mathcal{D}_*C is the stable quadratic module with generators

 $[A] \in \mathcal{D}_0 \mathbf{C}$ for any ob- $[A \xrightarrow{\sim} A'] \in \mathcal{D}_1 \mathbf{C}$ for any w $[A \rightarrow B \rightarrow B/A] \in \mathcal{D}_1 \mathbf{C}$ for any co subject to following seven relations. First, the degeneracy and bounday relations: $[*] = 0, \qquad [A \xrightarrow{\mathbf{1}_A} A] = [A \xrightarrow{\mathbf{1}_A} A \rightarrow *] = [* \rightarrow A \xrightarrow{\mathbf{1}_A} A] = 0,$ $\partial[A \xrightarrow{\sim} A'] = -[A'] + [A],$ $\partial [A \rightarrow B \rightarrow B/A] = -[B] + [B/A]$ Also, for any composite of weak equivalences $A \xrightarrow{\sim} A' \xrightarrow{\sim} A''$, $[A \xrightarrow{\sim} A''] = [A' \xrightarrow{\sim} A''] + [A \xrightarrow{\sim}$ For any diagram $\sigma_{2,1}$ as in Figure 1, $[B \xrightarrow{\sim} B'] + [A \longrightarrow B \xrightarrow{\rightarrow} B/A] = [A' \longrightarrow B' \xrightarrow{\rightarrow} B'/A']$ $+ \langle [A], -[$ For any diagram $\sigma_{3,0}$ as in Figure 1, $+ \langle [A], -[$ For any coproduct diagram $A \stackrel{i_1}{\underset{p_1}{\leftarrow} p_1} A \lor B \stackrel{i_2}{\underset{p_2}{\leftarrow}} B$ in C,

Main Theorem

Theorem B The classifying spectrum of $\mathcal{D}_*\mathbf{C}$ is naturally isomorphic to the 1-type $P_1K\mathbf{C}$ of the Waldhausen K-theory spectrum of C in the stable homotopy category.

The exact sequence in the row of (A) follows from this theorem. This theorem also allows us to describe the action of the stable Hopf map $\eta \in \pi_1 S^0$ on $K_0 \mathbf{C}$ in terms of generators and relations. For any object A in C there is an interchange map

 $\tau_A \colon A \lor A \cong A \lor A.$

Corollary C The homomorphism $\eta: K_0 \mathbb{C} \otimes \mathbb{Z}/2 \to K_1 \mathbb{C}$ induced by the action of the stable

Hopf map $\eta \in \pi_1 S^0 = \mathbb{Z}/2$ is given by

 $[A] \cdot \eta = [A \lor A \xrightarrow{\tau_A} A \lor A].$

(A)

Andrew Tonks

a.tonks@londonmet.ac.uk

$\xrightarrow{\sim} A'$.

bject in \mathbf{C} ,
veak equivalence in \mathbf{C} ,
cofiber sequence in \mathbf{C} ,

$$+ [A].$$
 (2) (3)

(1)

$$\rightarrow A'].$$
 (4)

$$A'] + [A \xrightarrow{\sim} A'] + [B/A \xrightarrow{\sim} B'/A']$$
$$[B'/A'] + [B/A]\rangle.$$
(5)

$$+ [B/A \rightarrow C/A \rightarrow C/B]$$

[C/A] + [C/B] + [B/A] \rangle. (6)

$$\langle [A], [B] \rangle = -[A \xrightarrow{i_1} A \lor B \xrightarrow{p_2} B] + [B \xrightarrow{i_2} A \lor B \xrightarrow{p_1} A].$$
(7)

Moreover, by relation (2) we have $\partial[\tau_A] = 0$ so we can regard $[\tau_A]$ as an element in K_1 C.

Informal illustrations

Some understanding of the presentation of the 1-type can be gained by imagining the cells of the bisimplicial set $X_{\bullet,\bullet}$ as building blocks to be assembled, then flattened in dimensions above two. Thus:

Generators in $\mathcal{D}_0 \mathbf{C}$ and $\mathcal{D}_1 \mathbf{C}$ are the 1- and 2-cells of $X_{\bullet,\bullet}$:

Relations (2) and (3) express the boundaries of these 2-cells. Relation (1), on the other hand, says that the degenerate cells are trivial:

Relation (4) says the following 3-cell is a *commutative prism*, in the sense that the front face is equal to the sum of the back two faces.

These express relations (5) and (6).

Relation (7) arises from the multiplicative structure

on the *total crossed complex* of $X_{\bullet,\bullet}$. This is induced, via the shuffle map, from the monoid structure on $X_{\bullet,\bullet}$ given by the coproduct on C.

References

- [4] G. Segal, *Categories and cohomology theories*, Topology **13** (1974), 293–312.
- Soc., Providence, R.I., 1978, pp. 35–60.
- pp. 318–419.

Poster no: 1403 — Scientific Section: Algebra — MSC: 19B99 16E20 18G50 18G55

London Metropolitan University, London, UK

Two more types of commutative 3-cell exist, corresponding to elements $\sigma_{2,1}$ and $\sigma_{3,0}$ in Figure 1.

 $\Pi(X_{\bullet,\bullet}) \otimes \Pi(X_{\bullet,\bullet}) \xrightarrow{\mu} \Pi(X_{\bullet,\bullet})$

[1] H.-J. Baues, Combinatorial Homotopy and 4-Dimensional Complexes, Walter de Gruyter, Berlin, 1991. [2] D. Conduché, Modules croisés généralisés de longueur 2, J. Pure Appl. Algebra 34 (1984), no. 2-3, 155–178. [3] A. Nenashev, K₁ by generators and relations, J. Pure Appl. Algebra **131** (1998), no. 2, 195–212. [5] F. Waldhausen, Algebraic K-theory of topological spaces. I, Proc. Sympos. Pure Math., XXXII, Amer. Math. [6] F. Waldhausen, Algebraic K-theory of spaces, Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985,