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Abstract. In this paper we determine the representation type of some algebras of infinite
matrices continuously controlled at infinity by a compact metrizable space. We explicitly
classify their finitely presented modules in the finite and tame cases. The algebra of row-
column-finite (or locally finite) matrices over an arbitrary field is one of the algebras con-
sidered in this paper, its representation type is shown to be finite.
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1. Introduction

Suppose that the discrete set N0 of non-negative integers is embedded N0⊂
X in a compact metrizable space X, and let E =N

′
0 ⊂X be the derived

set (i.e. points of X which contain infinitely many points of N0 in any
neighborhood). Consider the set R(E) of N0×N0 matrices (aij )i,j∈N0 with
entries in a (unital associative) ring R such that if {in}n∈N0 , {jn}n∈N0 ⊂N0

are sequences convergent in X to different points then the vector (ainjn)n∈N0

is almost all zero. This set is an R-algebra with the usual matrix opera-
tions. Any compact metrizable space can arise as E in this way. In fact
the isomorphism class of the algebra R(E) only depends on E. These alge-
bras are Morita equivalent to some additive categories of free R-mod-
ules continuously controlled at infinity by E appearing in the literature.
These categories play an important role in many areas such as controlled
homotopy theory, proper homotopy theory, C∗-algebra theory, K-theory
and L-theory (see for example [1,2,5,9,16]).

The elementary properties of the algebras R(E) have been studied by
Baues–Quintero ([2], V.3) for R=Z the integers. If E is zero-dimensional,
R(E) is a particular case of the rings considered by Farrell–Wagoner [7].
When E = ∗ is a singleton R(E)=RCFM(R) is the well-known algebra
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of row-column-finite (or locally finite) matrices over R. This algebra has
been studied from a purely ring-theoretical point of view (see for example
[18]). It was also used by Wagoner [19] to construct deloopings in algebraic
K-theory.

In this paper we concentrate on the representation theory of the alge-
bras R(E). Representation theory considers the decomposition problem in
a small additive category A. A solution to this problem consists of a
set of objects (which we call elementary objects) and of a set of isomor-
phisms (elementary isomorphisms) between finite direct sums of elementary
objects. These sets must satisfy the following properties: any object in A is
isomorphic to a finite direct sum of elementary ones, and any isomorphism
relation between two such direct sums can be derived from the elemen-
tary isomorphisms. Notice that this is exactly a presentation of the abe-
lian monoid Iso(A) of isomorphisms classes of objects in A. The trivial
solution is taking all objects as elementary objects and all isomorphisms
as elementary isomorphisms, however one is often interested in solutions
minimizing the cardinal of the sets of elementary objects and isomor-
phisms.

We say that A has finite representation type if there exists a finite
set of elementary objects and isomorphisms, or equivalently Iso(A) is
finitely presented. The representation type of A is wild if a solution to
the decomposition problem in A would yield a solution to the decompo-
sition problem in the category of finite-dimensional modules over a poly-
nomial k-algebra in two non-commuting variables. Otherwise A has tame
representation type. If A has wild representation type the word prob-
lem for finitely presented groups, which is undecidable, can be embed-
ded in the decomposition problem in A, hence one can not expect to
get satisfactory solutions in this case. The representation type of an
algebra A is that of the category fp(A) of finitely presented (right)
A-modules.

We prove in Corollary 4.4 that the decomposition problem for finitely
presented R(E)-modules contains the decomposition problem for countably
presented R-modules. This makes this problem untractable even for such
an elementary ring as R=Z since all countable abelian groups are count-
ably presented and conversely. For this reason, in the most of the paper we
restrict ourselves to the case R=k an arbitrary field.

One of the main results of this paper is the following theorem, where we
compute the representation type of the algebra k(E) in terms of the cardi-
nality of E, without restrictions on the ground field k.
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THEOREM 1.1. The representation type of k(E) is

card E type

<4 finite
=4 tame
>4 wild

In the finite and tame cases we construct explicit presentations of
Iso(fp(k(E))). Moreover, for E finite, we prove that there are presentations
of Iso(fp(k(E))) with a finite number of elementary isomorphisms and we
compute them. These presentations satisfy the following properties.

THEOREM 1.2. If card E is finite there are solutions to the decomposition
problem in fp(k(E)) with the following cardinals of elementary modules and
isomorphisms

card E modules isomorphisms

1 6 6
2 12 12
3 21 18
� 4 �ℵ0 6 card E

There are two key steps in the proof of these results. The first is to solve
the decomposition problem for finitely presented RCFM(k)-modules. The
second is to relate the decomposition problem in fp(k(E)) when card E=n
is finite to the decomposition problems in fp(RCFM(k)) and in the cate-
gory of finite-dimensional n-subspaces.

We shall use the category of pro-vector spaces and the inverse limit
functor to construct invariants detecting isomorphism types of finitely pre-
sented k(E)-modules. Moreover, we shall not usually work with the catego-
ries of finitely presented k(E)-modules but with the equivalent categories of
finitely presented modules over certain small additive categories. This alter-
native setting allows more flexibility and technical proofs become less com-
plicated than if we use k(E)-modules.

The results of this paper will be applied to proper homotopy theory in
a forthcoming paper [14]. Homotopy and homology ‘groups’ in the proper
homotopy category of spaces with a fixed space of Freudenthal ends E
are in fact Z(E)-modules. Proper cohomology groups are honest abelian
groups but their coefficients are Z(E)-modules. In proper obstruction the-
ory we find some relevant cohomology groups with coefficients in a proper
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homology module tensored by Z/2. These coefficient modules are hence
F2(E)-modules, where F2 is the field with two elements. The representation
theory developed in this paper plays a crucial role in the computation of
some classes in cohomology of categories coming from proper obstruction
theory. These computations lead us to determine in [14] algebraic models
for the proper homotopy types of a certain class of spaces already consid-
ered by Whitehead in ordinary homotopy theory [20].

In order to ease the reading we now describe the contents of this paper.
In Section 2 we briefly recall from [13] the basic tools of ringoid theory
that we need. Afterwards, in Section 3, we introduce the ringoids which are
Morita equivalent to the algebras R(E) and establish their basic properties.
For this we use the approach in [2], generalizing some results in this ref-
erence for R=Z to arbitrary rings. We put emphasis on the case E finite
because we shall always work under this assumption (even for the proof of
Theorem 1.1, see Remark 3.10). In Section 4 we construct an embedding
of the decomposition problem for countably presented R-modules into the
decomposition problem for finitely presented R(E)-modules, where E is any
non-empty compact metrizable space. Section 5 contains basic facts about
pro-categories. In Section 6 we construct some invariants of the isomorphism
class of a finitely presented k(E)-module, E finite. These invariants are used
in Section 7 to classify finitely presented k(E)-modules when E=∗ is just
one point and k(E)=RCFM(k). In particular we prove that this k-algebra
has finite representation type. The classification theorem (Theorem 7.1) is
derived from several technical lemmas. In Section 8 we recall the definition
and representation theory of the n-subspace quiver. We also define the class
of rigid n-subspaces, which plays an important role in what follows. We show
that all but 3n indecomposable representations of the n-subspace quiver are
rigid n-subspaces. In Section 9 we relate the representation theories of both
k(E) and the n-subspace quiver, where n is the cardinality of E. The proper-
ties of this relation are established in a series of technical results which lead
us to complete the proofs of Theorems 1.1 and 1.2 in Section 10. In this
last section we compute the structure of the monoid Iso(fp(k(E))) (Theorem
10.1) and give a classification theorem for finitely presented k(E)-modules
(Corollary 10.5) for E finite. This classification theorem explicitly describes
the (finite) set of elementary isomorphisms, and also the set of elementary
objects when E has less than 5 points. We include an Appendix with some
computations of Ext1 groups of finitely presented k(E)-modules, E finite,
which will be very useful for [14].

1.1. NOTATION AND CONVENTIONS

In this paper all rings and algebras are associative with unit. We use bold
letters C for categories, R for an arbitrary (non-commutative) ring, Z for
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the ring of integers, and k for fields. As usual N= {1,2,3, . . . } is the set
of natural numbers, and N0 = N ∪ {0} the free abelian monoid with one
generator.

Capital sans serif letters A are names of matrices with entries in some
ring. Here all matrices are square matrices indexed by N0, and the entry
of a matrix A corresponding to the subscripts i, j ∈N0 is denoted by aij ,
that is A= (aij )i,j∈N0 . The identity matrix is denoted by I, it is defined as
iii = 1 (i ∈N0) and iij = 0 for i �= j . The entries of the transposed matrix
At = (atij )i,j∈N0 of A are atij =aji (i, j ∈N0). Vectors are denoted by (vi)ni=1
or (vn)n∈N0 provided they have a finite or an infinite countable number
of entries. We regard vectors as column matrices, hence matrices act on
vectors on the left.

2. Ringoids and Modules

In this section we recall basic facts about modules over a small ringoid.
Our main reference for this subject is [13].

A ringoid R is a category whose morphism sets HomR(X,Y ) are abe-
lian groups in such a way that composition is bilinear. The endomor-
phism set EndR(X) = HomR(X,X) of an object X has a ring structure
with product given by composition of morphisms. Conversely any ring R

is identified with the ringoid with a single object whose endomorphism
set is R. An additive category is a ringoid with finite biproducts (direct
sums).

An additive functor between ringoids is a functor which induces ho-
momorphisms between morphism sets. Let Ab be the category of abe-
lian groups. A right-R-module M is an additive functor M : Rop→ Ab.
Morphisms of right-R-modules are natural transformations, and the cat-
egory of right-R-modules is denoted by mod(R) whenever R is small.
Left-R-modules are the same thing as right-Rop-modules, where Rop is the
opposite category, so every statement about right-modules has a convenient
translation to left-modules. From now on every module is a right-module
unless we state the contrary.

There is a Yoneda full inclusion of categories R⊂mod(R) which sends
an object X in R to the associated contravariant representable functor
HomR(−,X). These R-modules are said to be finitely generated free. They
are projective by Yoneda’s lemma.

An R-module M is finitely presented (f. p.) if it is the cokernel of a mor-
phism between two finite direct sums of finitely generated free R-modules.
The cokernel of a morphism between f. p. modules is also f. p. In particu-
lar direct summands of f. p. modules are f. p. We write fp(R)⊂mod(R) for
the full subcategory of f. p. R-modules. If R=A is an additive category,
then a f. p. A-module M is in fact the cokernel in mod(A) of a morphism
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ϕ :X1→X0 in A. One can readily check that if N = Coker[ψ : Y1→ Y0]
is another f. p. A-module, any morphism τ : M→N is represented by a
morphism τ0 :X0→ Y0 such that there exists τ1 :X1→ Y1 with τ0ϕ =ψτ1.
Another morphism τ ′0 :X0→ Y0 represents τ if and only if there exists η :
X0→Y1 with τ0+ψη= τ ′0. More precisely, let pair(A) be the additive cate-
gory whose objects are morphisms in A, and morphisms τ = (τ1, τ0) :ϕ→ψ

are commutative squares.

There is an obvious functor Coker: pair(A)→ fp(A) given by taking coker-
nels. We define in pair(A) the natural equivalence relation ∼ with τ ∼ τ ′ if
there exists η :X0→Y1 satisfying τ0+ψη= τ ′0.

PROPOSITION 2.1. The functor Coker factors through the quotient cate-
gory pair(A)/∼ and the induced functor Coker: pair(A)/∼→ fp(A) is an
equivalence of categories.

Any additive functor F : R→ S between small ringoids induces two
‘change of coefficients’ additive functors F

∗ : mod(S)→ mod(R) and F∗ :
mod(R)→mod(S). The first one is exact and sends an S-module M to the
composite F

∗M=MF. The second one is left-adjoint to F
∗ (F∗ is the left

additive Kan extension along F, see [13], 6) and hence right-exact. More-
over, the next diagram commutes

(2.a)

In addition if F is full and faithful then so is F∗, and in this case F
∗
F∗ is

naturally equivalent to the identity, see [3], 3.4.1. This follows from the fact
that any R-module admits a projective resolution by (arbitrary) direct sums
of finitely generated free ones. The functor F∗ restricts to the full subcate-
gories of f. p. modules.

If we identify the endomorphism ring EndR(X) of an object X with the
full subcategory of R whose unique object is X the change of coefficients
F
∗ induced by the inclusion F : EndR(X)⊂R is the evaluation functor

evX=F
∗ : mod(R)→mod(EndR(X)) :M 
→M(X).
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Proposition 2.2 is a useful criterion to detect when a ringoid is Morita
equivalent to a ring. It is an easy consequence of [13], 8.1.

PROPOSITION 2.2. If every object in R is a retract of X then the eval-
uation functor evX is an additive equivalence of abelian categories which
restricts to an equivalence between the full subcategories of finitely presented
modules.

In a more categorical language ringoids are defined as categories
enriched over the monoidal category of abelian groups with the usual
tensor product, compare [4], 6.2. For any ring R one can consider the
monoidal category of R-R-bimodules with the R-tensor product and define
an R-ringoid as a category enriched over it. This is the same as an R-cate-
gory in the sense of [13] when R is commutative. If R is an R-ringoid the
endomorphism ring EndR(X) of an object X is in fact an R-algebra. In this
case R-modules and morphisms between them take values in the category
of (right) R-modules in a natural way.

3. The Algebras R(E) and Related Additive Categories

In this section we give an alternative approach to the algebras R(E) in
terms of modules over certain additive categories.

Given a ring R and a set A we write R〈A〉 for the free R-module
with basis set A. Free R-modules are R-R-bimodules, hence the additive
category of free R-modules and right-R-module homomorphisms is an
R-ringoid. The carrier of an element x ∈R〈A〉 is the (finite) set carr(x)⊂A
such that z∈ carr(x) if z appears with a non-trivial coefficient in the linear
expansion of x.

For every non-empty compact metrizable space E there exists another
one X containing E such that the complement Y =X−E is dense in X.
The triple T̄ = (X,Y,E) can always be chosen to be a tree-like space in the
sense of [2], III.1.1. One can also take X to be the (unreduced) cone over
E, X=CE=E× [0,1]/E×{1}. Here we identify E with E×{0} inside the
cone CE.

A free T̄ -controlled R-module R〈A〉α is a free R-module R〈A〉 together
with a function α : A→ Y , called height function, such that α−1(K) is
finite for every compact subspace K ⊂ Y . The set A is necessarily count-
able and the derived set of α(A) in X satisfies α(A)′ ⊂ E. This derived
set is called the support of R〈A〉α. Controlled homomorphisms ϕ :R〈A〉α→
R〈B〉β are homomorphisms between the underlying R-modules such that
for every x ∈E and every neighborhood U of x in X there exists another
neighborhood V ⊂U of x in X such that if a ∈A satisfies α(a)∈ V then
β(carr(ϕ(a))) ⊂ U . The category MR(T̄ ) of free T̄ -controlled R-modules
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and controlled homomorphisms is a small additive category. Moreover, it is
an R-ringoid. The sum and R-actions on morphism sets are given by those
of the underlying free R-module homomorphisms, and the direct sum of
two objects is R〈A〉α ⊕R〈B〉β =R〈A �B〉(α,β), where A �B is the disjoint
union of sets and (α,β) :A�B→Y is defined as α over A and β over B.

Remark 3.1. The category MR(T̄ ) is defined in [2] III.4.7 for T̄ a tree-
like space. However, as it is pointed out in the Remark after that definition,
it is equivalent to the category B(X,E;R) in [5]. In particular MR(T̄ )

only depends on E up to equivalence of categories preserving supports of
objects (in fact equivalence of R-ringoids), see 1.23 and 1.24 in [5].

Proposition 3.2 shows that free T̄ -controlled R-modules are classified by
the underlying R-module and the support.

PROPOSITION 3.2. Two free T̄ -controlled R-modules R〈A〉α, R〈B〉β are
isomorphic if and only if the next two conditions are satisfied:

(1) The underlying R-modules are isomorphic R〈A〉�R〈B〉,
(2) both have the same support α(A)′ =β(B)′.
If the supports are non-empty then condition (1) is automatically satis-
fied. Furthermore, any compact subset K ⊂ E is the support of some free
T̄ -controlled R-module.

In the proof of this proposition we shall use the following.

LEMMA 3.3. Given an injective controlled homomorphism ϕ : R〈A〉α →
R〈B〉β we have that α(A)′ ⊂β(B)′.

Proof. For any e ∈ α(A)′ we can take a sequence {an}n∈N ⊂ A with
lim
n→∞α(an)= e. Since ϕ is injective carr(ϕ(an)) is non-empty for every n∈N

so we can take elements bn∈carr(ϕ(an)). By definition of controlled homo-
morphism lim

n→∞β(bn)= e, hence e∈β(B)′ and the inclusion holds.

Proof of Proposition 3.2. The case R=Z and T̄ a tree-like space follows
from [2], III.4.8 and III.4.16. In general condition (1) is necessary since
an isomorphism of free T̄ -controlled R-modules is also an isomorphism
between the underlying R-modules. Moreover, condition (2) is necessary by
Lemma 3.3. By Remark 3.1 it is enough to make the proof for tree-like
spaces. In the rest of the proof we shall suppose that T̄ is tree-like.

If α(A)′ = α(B)′ = ∅ then A and B are both finite and any isomor-
phism R〈A〉�R〈B〉 is a controlled isomorphism R〈A〉α�R〈B〉β . If α(A)′ =
β(B)′ �= ∅ then A and B are infinite countable, so Z〈A〉 �Z〈B〉. Since the
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proposition holds for R=Z there is a controlled isomorphism ϕ: Z〈A〉α�
Z〈B〉β . Now one can check that ϕ⊗R :R〈A〉α�R〈B〉β is an isomorphism
of free T̄ -controlled R-modules.

Finally, given K⊂E compact, if Z〈C〉γ is a free T̄ -controlled Z-module
whose support is K then the support of R〈C〉γ is K as well, because it only
depends on γ . The proof is now complete.

The next result follows directly from Remark 3.1, Proposition 3.2 and
the definition of controlled homomorphisms.

PROPOSITION 3.4. Up to isomorphism, the endomorphism algebra of a
free T̄ -controlled R-module with support E only depends on E. Moreover, it
is isomorphic to R(E).

The last isomorphism of this proposition is given by the fact that the
basis of a free T̄ -controlled R-module R〈A〉α with support E must be
infinite countable, and hence it can be identified with the non-negative inte-
gers A=N0. Moreover, we can suppose that α is the inclusion of a dis-
crete subspace α :A⊂Y , exchanging A by α(A) if necessary. Now we are in
the same situation as in the beginning of the introduction. We also derive
from Proposition 3.4 that the isomorphism class of the R-algebra R(E) only
depends on E, as we claimed in the introduction.

PROPOSITION 3.5. Every free T̄ -controlled R-module is a retract of any
object whose support is E.

Proof. Recall from Proposition 3.2 that all objects with support E are
isomorphic. By Remark 3.1 it is enough to check the proposition for T̄
a tree-like space. For R=Z and T̄ tree-like this proposition is contained
in the proof of [2], V.3.4. The result for arbitrary rings follows from the
special case R = Z. More precisely, given a free T̄ -controlled R-module
R〈A〉α, let R〈B〉β be chosen with support E. Then Z〈A〉α is a retract of
Z〈B〉β (the supports only depend on the height functions) hence we obtain
a retraction of R〈B〉β onto R〈A〉α by tensoring by R.

As a consequence of this Proposition we get by Proposition 2.2 the fol-
lowing equivalence of categories which will be used from now on as an
identification.

COROLLARY 3.6. The evaluation functor in a free T̄ -controlled R-module
with support E induces an additive equivalence of abelian categories
mod(MR(T̄ )) � mod(R(E)) which restricts to another one fp(MR(T̄ )) �
fp(R(E)).
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Remark 3.7. If R�Rop, in particular if R is commutative, the transposi-
tion of matrices and an explicit isomorphism R�Rop induce isomorphisms
of R-ringoids MR(T̄ )�MR(T̄ )

op (preserving objects) and R-algebras R(E)�
R(E)op, compare [5], so in this case right-modules over MR(T̄ ) or R(E)
are the same as left-modules.

In Proposition 3.8 we compute the dimension of the k-algebra k(E), k
any field.

PROPOSITION 3.8. dim k(E)= (card k)ℵ0 .

Proof. The k-vector space of all N0 × N0 matrices is the direct prod-
uct of N0×N0 copies of k, and it is known that dim

∏
N0×N0

k= (card k)ℵ0

(see [11], IX.5), hence dim k(E)� (card k)ℵ0 . Moreover, for any element
(an)n∈N0 ∈

∏
N0
k the diagonal matrix (bij )i,j ∈ N0 with bnn = anbelongs

to k(E), therefore k(E) has a vector subspace isomorphic to
∏

N0
k, and

dim
∏

N0
k= card kℵ0 as well, so the equality of the statement holds.

3.1. THE SPECIAL CASE card E FINITE

If card E is finite, since E is metrizable, it must have the discrete topology,
so E is the discrete set n with n× card E points. For this particular space
we can take a tree-like space T̄n= (T̂n, Tn,n), where Tn is a locally compact
tree with n Freudenthal ends and T̂n is the Freudenthal compactification of
Tn (see [2], III.1.3). Moreover, if T 0

n is the vertex set of Tn and δ : T 0
n ⊂ Tn

is the inclusion, the support of R〈T 0
n 〉δ is n, in particular R(n) is the endo-

morphism ring of this object. Let us fix the following particular tree Tn: the
vertex set of Tn is

T 0
n ={v0}∪ {v1

m, . . . , v
n
m}m� 1,

and there are edges joining v0 with vi1 and vim with vim+1 (1 � i�n, m� 1).
The additive category MR(T̄n) is equivalent to the full subcategory of
objects R〈A〉α such that α(A)⊂T 0

n , compare the proof of [2], V.3.4. From
now on we shall always work in this subcategory, and we denote it by
MR(T̄n) as well.

We are going to give an alternative description for controlled homomor-
phisms in MR(T̄n). For this we define the following sets for any height func-
tion α :A→T 0

n ⊂Tn (1 � i�n, j � 1)

Aij =
⋃

l� j

α−1(vil ).

A morphism ϕ :R〈B〉β→R〈A〉α in MR(T̄n) is controlled if and only if for
every m� 1 there exists M � 1 such that ϕ(BiM)⊂R〈Aim〉 for any 1 � i � n.
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We shall omit the superindex i when n=1. Moreover, for the next sections
we fix the following notation (m� 0)

mA=α−1(v0)∪



⋃

1 � i�n

⋃

l�m

α−1(vil )



 , mA
i
j =mA∩Aij .

Remark 3.9. If n = 1, T1 = [0,+∞) is the half-line and T 0
1 = N0 the

non-negative integers. Moreover R(1) is the R-algebra RCFM(R) of N0×
N0 matrices with entries in R such that every row and every column has
a finite number of non-zero entries (row×column×finite matrices), compare
[2], V.3.8.

Remark 3.10. If E is any compact metrizable space with at least n points
we can fully include MR(T̄n) into MR(T̄ ). For this we only need to take
n disjoint sequences {vim}m� 1 (1 � i�n) contained in Y converging in X to
n different points belonging to E, and an additional point v0 ∈ Y out of
the sequences. Now we identify MR(T̄n) with the full subcategory of MR(T̄ )

given by objects R〈A〉α with α(A)⊂ {v0} ∪ {v1
m, . . . , v

n
m}m� 1. If we write F

for this full inclusion, we get another full inclusion F∗ : mod(MR(T̄n))→
mod(MR(T̄ )) together with a retraction up to natural equivalence F

∗ :
mod(MR(T̄ ))→mod(MR(T̄n)). Moreover, the first functor F∗ restricts to the
full subcategories of f. p. modules, see Section 2, hence the decomposition
problem for f. p. R(n)-modules is included in the decomposition problem
for f. p. R(E)-modules, in particular we only need to prove Theorem 1.1
for card E finite.

4. Countably Presented R-Modules as Finitely Presented
RCFM(R)-Modules

There is a full exact inclusion of abelian categories

i : mod(R)→mod(RCFM(R))

defined by iM=HomR(R〈N0〉,M). The ring RCFM(R) acts on iM by en-
domorphisms of R〈N0〉.

Let f : MR(T̄1)→mod(R) be the forgetful functor which sends a free
T̄1-controlled R-module to its underlying R-module. The RCFM(R)-mod-
ule iM can be regarded as the functor iM=HomR(f,M) : MR(T̄1)

op→Ab.

PROPOSITION 4.1. The functor i has an exact left-adjoint r such that ri
is naturally equivalent to the identity functor. Moreover, r can be chosen to
be the evaluation functor in a free T̄1-controlled R-module with one generator.
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Proof. Let R〈e〉φ be a free T̄1-controlled R-module whose basis is a sin-
gleton {e} (all these objects are isomorphic in MR(T̄1) by Propostion 3.2).
The endomorphism ring of this object is R, hence the evaluation func-
tor evR〈e〉φ takes values in the category of R-modules. Let us see that the
exact functor evR〈e〉φ is left-adjoint to i. A left-adjoint for i exists as a
consequence of the adjoint functor theorem, see [3], 3.3.7, so we have just
to check that HomMR(T̄1)

(R〈A〉α,iM)=HomR(evR〈e〉φR〈A〉α,M) for any free
T̄1-controlled R-module R〈A〉α in a natural way. This follows from the obvi-
ous natural identification evR〈e〉φR〈A〉α=R〈A〉 and Yoneda’s lemma.

COROLLARY 4.2. If M is an R-module and N an RCFM(R)-module then
there are natural isomorphisms (n� 0)

ExtnR(E)(N ,iM)�ExtnR(rN ,M).

In particular if R=k is a field the RCFM(k)-modules iM are all injective.

An R-module is countably presented provided it is the cokernel of a mor-
phism between free R-modules with countable basis. Obviously the coker-
nel of a morphism between countably presented R-modules is countably
presented as well. In particular direct summands of countably presented
R-modules are countably presented.

PROPOSITION 4.3. The functor i sends countably presented R-modules to
finitely presented RCFM(R)-modules.

In the proof of this proposition we shall use the row-column-finite matrices
A and B defined by

• ai+1,i=1 (i ∈N0) and aij =0 in other cases,
• b n(n+1)

2 +i, (n−1)n
2 +i=1 for any n>0 and 0 � i <n, and bij =0 otherwise.

And we regard RCFM(R) as the endomorphism R-algebra of the free T̄1-
controlled R-module R〈N0〉δ, where δ : N0 ⊂ [0,+∞) is the inclusion, see
Remark 3.9 and Proposition 3.4.

Proof of Proposition 4.3. Since i is exact it will be enough to check the
proposition for the countably presented R-modules R and R〈N0〉. Recall
that HomMR(T̄1)

(R〈N0〉δ,iM)=HomR(R〈N0〉,M) for any R-module M. The
RCFM(R)-modules iR and iR〈N0〉 are the cokernels of (I−A) and (I−B),
respectively. The natural projections onto the cokernel are given by the ho-
momorphisms R〈N0〉 → R and R〈N0〉 → R〈N0〉 defined on generators by
n 
→1 (n� 0) and (n(n+1)/2)+ i 
→ i (n� i� 0), respectively.
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As a consequence of Propositions 4.1 and 4.3, and Remark 3.10 we get
Corollary 4.4.

COROLLARY 4.4. The representation problem for countably generated
R-modules is embedded in the representation problem for finitely presented
R(E)-modules, where E is any non-empty compact metrizable space.

5. A Review on Pro-categories

Here we recall the definition of pro-objects and pro-morphisms and some
of its basic facts. We refer to [6,12] for further results on this subject used
in this paper.

Any partially ordered set (poset) 
 can be regarded as a small cate-
gory with a unique morphism u→ v provided u � v, u, v ∈
. A poset 

is directed if given u, v ∈
 there exists w ∈
 with w � u, v. Moreover, 

is cofinite if the set {u∈
;u�v} is finite for every v∈
.

A pro-object or inverse system X• over a category C is a functor X• :

→C, where 
 is a directed cofinite poset. If u∈
 we usually write Xu=
X•(u). The morphisms X•(u→ v) (u, v ∈
,u � v) are the bonding mor-
phisms of X•, and 
 is the indexing set of the inverse system.

The category pro-C has objects inverse systems over C. Morphism sets
are given by the following formula

Hompro-C(X•, Y•)= lim
v

colim
u

HomC(Xu, Yv). (5.a)

We identify any object in C with the inverse system whose indexing set
is a singleton 
=∗. This defines a full inclusion of categories C⊂pro-C.
This inclusion has a right-adjoint, the (inverse) limit functor lim : pro-C→
C, limX• = limu Xu.

The category pro-C is abelian whenever C is, see [6], 6.4. This will be
always the case, because we are only going to use in this context the cat-
egory C=mod(k) of k-vector spaces. If V is a vector space and X• an
inverse system of vector spaces, then by (5.a)

Hompro-mod(k)(V ,X•)= lim
v

Homk(V ,Xv)=Homk(V , limX•).

Hence, since Homk(V ,−) is an exact functor in the category of vec-
tor spaces, the Grothendieck spectral sequence (see [10], 9.3) yields an
isomorphism

Ext1
pro-mod(k)(V ,X•)=Homk(V , lim

1
X•). (5.b)
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6. Numerical Invariants of Finitely Presented k(n)-Modules

In this section we shall define invariants of the isomorphism class of a f.
p. k(n)- module lying in the abelian monoids N∞,n (n � 1). The abelian
monoid N∞,n has n+1 generators

1,∞1, . . . ,∞n

and 2n relations

1+∞i=∞i , ∞i+∞i=∞i , (1 � i�n).

As a set N∞,n is

N∞,n=N0�
{

∞S=
∑

i∈S
∞i; ∅ �=S⊂{1, . . . n}

}

.

For the sake of simplicity if n= 1 we write N∞,1=N∞ and ∞1=∞. The
notation of Section 3.1 will be used without any further mention.

Let ϕ : k〈B〉β→ k(A)α be a morphism in Mk(T̄n). We define the element
λϕ ∈N∞,n in the following way: if the vector space

Lϕ= k〈A〉
⋂
m� 1

∑n
i=1[k〈Aim〉+ϕ(k〈B〉)]

is finite-dimensional then λϕ = dimLϕ, otherwise λϕ = ∞S , where S ⊂
{1, . . . , n} is the biggest subset such that if i �∈ S then there exists M � 1
with k〈AiM〉⊂ϕ(k〈B〉).

PROPOSITION 6.1. The element λϕ only depends on the isomorphism class
of the f.p. k(n)-module Coker ϕ, and λϕ⊕ψ =λϕ+λψ .

Proof. One can readily check by using the alternative description of con-
trolled homomorphisms given in Section 3.1 that the correspondence ϕ 
→
ϒ(ϕ)=Lϕ defines an additive functor ϒ from pair(Mk(T̄n)) to the category
of k-vector spaces. Moreover, if V ϕ,i• is the inverse system of k-vector spaces
indexed by N given by (1 � i�n)

V ϕ,im =
k〈Aim〉+ϕ(k〈B〉)

ϕ(k〈B〉) ,

and the obvious inclusions as bonding morphisms, the correspondences
ϕ 
→ 
i(ϕ) = V ϕ,i• also define additive functors 
i from pair(Mk(T̄n)) to
the category of pro-vector spaces. Furthermore, it is easy to see that the
functors ϒ,
i (1 � i�n) factor through the natural equivalence relation ∼
in pair(Mk(T̄n)), hence the first statement of the proposition follows from
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Proposition 2.1 and the fact that λϕ is defined as dimϒ(ϕ) provided this
vector space is finite-dimensional, and otherwise λϕ =∞S , where S = {i ∈
{1, . . . , n};
i(ϕ) �� 0}. The second part of the statement follows from the
additivity of the functors ϒ,
i (1 � i�n).

If the following vector space has finite dimension,

Mi
ϕ=

⋂
m� 1

[
k〈Aim〉+ϕ(k〈B〉)

]

⋂
m� 1

{[
k〈Aim〉+ϕ(k〈B〉)

]∩
[∑

j �=i k〈Ajm〉+ϕ(k〈B〉)
]} ,

the element µiϕ ∈N∞ (1 � i�n) is defined as µiϕ=dimMi
ϕ, otherwise µiϕ=∞.

PROPOSITION 6.2. The elements µiϕ (1 � i�n) only depend on the isomor-
phism class of the f.p. k(n)-module Coker ϕ, and µiϕ⊕ψ =µiϕ+µiψ .

Proof. By using the characterization of controlled homomorphisms given
in Section 3.1 one readily checks that the correspondences ϕ 
→Mi

ϕ define
additive functors from pair(Mk(T̄n)) to the category of k-vector spaces.
Moreover, these functors factor through the natural equivalence relation ∼,
hence the proposition follows from Proposition 2.1.

In order to define elements νiϕ ∈N∞ (1 � i�n) we introduce inverse sys-
tems of k-vector spaces Uϕ,i

• , indexed by the set N×N with the product
partial order, given by

Uϕ,i
pq =

k〈Aip〉∩ϕ(k〈B〉)
k〈Aip〉∩ϕ(k〈Biq〉)

,

and bonding homomorphisms induced by the obvious inclusions of vector
spaces. If the limit of Uϕ,i

• is finite-dimensional we set νiϕ = dim limUϕ,i
• ,

otherwise νiϕ=∞.

PROPOSITION 6.3. The elements νiϕ (1 � i�n) only depend on the isomor-
phism class of the f.p. k(n)-module Coker ϕ, and νiϕ⊕ψ =νiϕ+νiψ .

Proof. One can check by using the description of controlled homomor-
phisms given in Section 3.1 that the correspondences ϕ 
→Uϕ,i

• are additive
functors from pair(Mk(T̄n)) to the category of pro-vector spaces, and these
functors factor through the natural equivalence relation ∼, hence the prop-
osition follows from Proposition 2.1.

Propositions 6.1–6.3 are summarized in the following corollary.
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COROLLARY 6.4. There are well defined morphisms of abelian monoids
(n∈N)

�n : Iso(fp(k(n)))→N∞,n×
n∏

i=1

N∞×
n∏

i=1

N∞

which send the isomorphism class [M] of a f. p. k(n)-module M =
Coker ϕ to

�n([M])=
(
λϕ,
(
µiϕ
)n
i=1
,
(
νiϕ
)n
i=1

)
.

From now on we shall write λM=λϕ,µiM=µiϕ and νiM= νiϕ (1 � i�n)
if M×Coker ϕ and omit the superscript i when n=1.

Remark 6.5. There are n full inclusions F
i : Mk(T̄1)→Mk(T̄n) (1 � i�n)

defined by identifying T 0
1 =N0 (see 3.9) with the subset {v0}∪{vim}m � 1⊂T 0

n

in the obvious way, (see Remark 3.10).

Proposition 6.6 can be easily checked by using the commutativity of
(2.a) and the right-exactness of the functors F

i
∗.

PROPOSITION 6.6. If M is a f. p. k(1)-module then for every 1 � i�n
• λFi∗M=λM if λM∈N0, and λFi∗M=∞i otherwise,
• µi

Fi∗M=µM and µj
Fi∗M=0 if j �= i,

• νi
Fi∗M=νM and νj

Fi∗M=0 if j �= i.

7. Classification of Finitely Presented RCFM(k)-Modules

Recall from Remark 3.9 that the k-algebra k(1) coincides with RCFM(k),
the k-algebra of matrices A = (aij )i,j∈N0 with entries in k such that every
row and every column has at most a finite number of non-trivial entries
(row-column-finite matrices). Those matrices are the endomorphisms of the
free T̄1-controlled k-vector space k〈N0〉δ, where δ :N0⊂ [0,+∞) is the inclu-
sion of the vertex set. The unit element of the k-algebra RCFM(k) is the
identity matrix I with iii=1 (i∈N0) and iij =0 if i �=j . For the sake of sim-
plicity we abbreviate R=RCFM(k).

Consider the matrices A and B used in the proof of Proposition 4.3,
they are defined as

• ai+1,i=1 (i ∈N0) and aij =0 in other cases,
• b n(n+1)

2 +i, (n−1)n
2 +i=1 for any n>0 and 0 � i <n, and bij =0 otherwise.

We define the following R-modules
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• A=R/(AR),
• B=R/((I−A)R),
• C=R/((I−At )R),
• B∞=R/((I−B)R),
• C∞=R/((I−Bt )R).
The main result of this section is as follows.

THEOREM 7.1. (Classification of f. p. RCFM(k)-modules). There is a
solution to the decomposition problem in the category of f. p. RCFM(k)-
modules given by the following elementary modules

A,R,B,B∞,C,C∞,
and elementary isomorphisms

A⊕R�R, R⊕R�R, B⊕B∞�B∞,
B∞⊕B∞�B∞, C⊕C∞�C∞, C∞⊕C∞�C∞.

This theorem implies Theorems 1.1 and 1.2 for card E=1. It is a direct
consequence of the next two results. We shall use the following notation.
Given n∈N0 we write An,Bn and Cn for the direct sum of n copies of A,B
or C, respectively, and A∞=R.

THEOREM 7.2. For every f. p. R-module M there is an isomorphism

M�AλM⊕BµM⊕CνM .

PROPOSITION 7.3. We have the following equalities:

• �1(A)= (1,0,0),
• �1(B)= (0,1,0),
• �1(C)= (0,0,1),
• �1(R)= (∞,0,0),
• �1(B∞)= (0,∞,0),
• �1(C∞)= (0,0,∞).

In particular we have that the following corollary.

COROLLARY 7.4. The monoid morphism

�1 : Iso(fp(k(1)))→N∞×N∞×N∞

is an isomorphism.

The proof of Proposition 7.3 will be given later. Theorem 7.2 is a direct
consequence of Lemmas 7.18–7.20 and 7.22. They are the hardest technical
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results of this paper. In fact the rest of this long section is highly techni-
cal. It is focused towards proving Theorem 7.2, although some interesting
corollaries on the homological algebra of finitely presented R-modules are
derived from the technical lemmas. These homological results are used in
the proof of Theorem 7.2 as well as in the appendix. The reader can skip
this material in a first reading. We shall use the notation from Section 3.1
with no explicit mention.
The next result is an easy computation.

LEMMA 7.5. The following equalities hold in R:

(1) AtA = I,
(2) BtB = I.

Lemma 7.6 follows directly from Proposition 3.2.

LEMMA 7.6. Two free T̄1-controlled k-vector spaces k〈A〉α, k〈B〉β are iso-
morphic in Mk(T̄1) if and only if A and B have the same cardinality.

LEMMA 7.7. The R-module A is isomorphic to any 1-dimensional free
T̄1-controlled k-vector space.

Proof. If k〈e〉φ is a 1-dimensional free T̄1-controlled k-vector space, the
cokernel of A is given by the controlled homomorphism ϕ : k〈N0〉δ � k〈e〉φ
defined over the basic elements as 0 
→ e and n 
→0 for n>0.

The proof of Proposition 7.3 is as follows.

Proof of Proposition 7.3. In this proof we omit some straightforward
but tedious computations which can be carried out by the interested reader
with not too much dificulty. We shall write Np (p � 1) for the set of
naturals � p.

The R-module R corresponds to the free T̄1-controlled k-vector space
k〈N0〉δ, where δ : N0 ⊂ [0,+∞) is the inclusion, hence it is the cokernel
of the trivial morphism 0 : 0→ k〈N0〉δ, and the equalities λR =∞,µR =
0 hold immediately, moreover, U 0

m,n = k〈Nm〉 for all m,n ∈ N, and given
M � m,N � n the corresponding bonding homomorphism in U 0

• is the
inclusion U 0

M,N = k〈NM〉 ⊂ k〈Nm〉 =U 0
m,n, therefore limU 0

• =
⋂
m∈N k〈Nm〉 = 0

and νR=0.
By Lemma 7.7 the Mk(T̄1)-module A is the cokernel of the trivial mor-

phism 0→k〈e〉φ, where k〈e〉φ is a 1-dimensional free T̄1-controlled k-vector
space, hence the equality �1(A)= (1,0,0) follows easily.
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One can check that k〈Nn〉 + (I − A)(k〈N0〉) = k〈N0〉 for all n ∈ N, and
k〈N0〉/(I− A)(k〈N0〉)� k generated by the class of any n ∈N0, so λB = 0
and µB = 1. Moreover, k〈Nn〉 ∩ (I− A)(k〈N0〉)= (I− A)(k〈Nn〉) and hence
U(I−A)
n,n = 0 for all n ∈N, therefore limU(I−A)

• = 0 since the diagonal subset
{(n, n);n∈N}⊂N×N is cofinal, so νB=0.

One can see that (I−At )(k〈N0〉)= k〈N0〉, hence λC = 0=µC, moreover
(I−At )(k〈Nn〉) is generated by the set {m− (m−1)}m � n, therefore U(I−At )

n−1,n �
k generated by the class of any m � n − 1 and the bonding homomor-
phism U

(I−At )
n,n+1 →U

(I−At )
n−1,n is an isomorphism, so again by cofinality we see

that limU(I−At )
• �k, in particular νC=1.

The vector space k〈Nn〉+ (I−B)(k〈N0〉) is the whole k〈N0〉, so λB∞ = 0,
moreover, a basis of k〈N0〉/(I−B)(k〈N0〉) is {n(n+3)/2}n∈N0

, hence µB∞ =
∞. One can check that k〈Nn〉 ∩ (I− B)(k〈N0〉)= (I− B)(k〈Nn〉), therefore
U(I−B)
n,n =0, limU(I−B)

• =0 and νB∞ =0.
Finally (I−Bt )(k〈N0〉)= k〈N0〉, so λC∞ = 0=µC∞ , and there are isomor-

phisms (n∈N0)

U
(I−Bt )
(n+1)(n+2)

2 , n(n+1)
2

�k
〈
n(n+1)

2
, . . . ,

n(n+1)
2
+n
〉

,

moreover, the following bonding homomorphism (n>0)

U
(I−Bt )
(n+1)(n+2)

2 , n(n+1)
2

→U
(I−Bt )
n(n+1)

2 , (n−1)n
2

sends (n(n+1)/2)+m to ((n−1)n/2)+m if m<n and (n(n+1)/2)+n to
the trivial element, so limU(I−Bt )

• =∏
N0
k is the direct product of an infinite

countable number of copies of k and the equality νC∞ =∞ holds.

LEMMA 7.8. There is an R-module isomorphism R/BR�R.

Proof. Let A⊂N0 be the infinite subset A={n(n+3)/2}n∈N0
, and α :A⊂

N0 the inclusion. The next sequence, where ϕ is the obvious projection, is
exact

k〈N0〉δ B
↪→ k〈N0〉δ ϕ� k〈A〉α.

Hence the lemma follows from Lemma 7.6.

LEMMA 7.9. Left-multiplication by one of the following matrices induces an
injective right-R-module homomorphism R→R,

A, (I−A), (I−At ), (I−B), (I−Bt ).

Proof. The matrix A has a left-inverse in R by Lemma 7.5. The other
matrices have a left-inverse either in the k-algebra CFM(k) of column-finite
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matrices or in the k-algebra RFM(k) of row-finite matrices. Both k-alge-
bras contain R, moreover, R = CFM(k)∩RFM(k). The k-algebra CFM(k)
is just the endomorphism ring of the k-vector space k〈N0〉, and there is an
isomorphism RFM(k)� CFM(k)op given by transposition. More precisely,
let C,D be the matrices in RFM(k) defined by c1

ij = 1 if i � j and zero
otherwise, and d (m−1)m

2 +i, (n−1)n
2 +i=1 (m � n>i � 0) and trivial in other cases.

One can check that C(I−A)= I,Ct (I−At )= I,D(I−B)= I and D(I−Bt )= I,
hence the lemma follows.

PROPOSITION 7.10. There are extensions of R-modules

(1) A ↪→B �C,
(2) R ↪→B∞�C∞.

Proof. By using Lemmas 7.5, 7.8 and 7.9 we get the following equalities,
isomorphisms and short exact sequences, which correspond to the exten-
sions of the statement

R
AR �

(I−At )R
(I−At )AR =

(I−At )R
(I−A)R ↪→ R

(I−A)R � R
(I−At )R ,

R� R
BR �

(I−Bt )R
(I−Bt )BR =

(I−Bt )R
(I−B)R ↪→ R

(I−B)R � R
(I−Bt )R .

The proof of the following proposition is contained in the proof of
Proposition 4.3.

PROPOSITION 7.11. Given a k-vector space V , if dimV < ℵ0 then iV =
BdimV , and iV =B∞ if dimV =ℵ0.

Corollary 7.12 follows from Proposition 7.11 and Corollary 4.2.

COROLLARY 7.12. The R-module Bd is injective for every d ∈N∞.

In Lemma 7.13 we show that one can adapt the basis of a countably gen-
erated vector space to a decreasing filtration.

LEMMA 7.13. Let V0⊃V1⊃· · ·⊃Vn⊃Vn+1⊃· · · be a decreasing sequence
of k-vector spaces such that V0 is the union of an increasing sequence of
finite dimensional subspaces V 0

0 ⊂V 1
0 ⊂· · ·⊂V n0 ⊂V n+1

0 ⊂· · · , V0=
⋃
n∈N0

V n0 .
If we set V −1

0 = 0, V nm = V n0 ∩ Vm (n+ 1,m∈N0),V∞ =
⋂
n∈N0

Vn and choose
(finite and possibly empty) sets {alnm;1 � l � rnm}⊂V nm such that the sets
{
alnm+ (V n−1

m +V nm+1);1 � l� rnm
}
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are basis of V nm/(V
n−1
m + V nm+1) (n,m ∈ N0), then given m,n,p ∈ N0 with

m � p

(1)
{
a
lij
ij +V np ; i�n,m� j <p,1 � lij � rij

}
is a basis of V nm/V

n
p ,

(2)
{
a
lij
ij +V∞; i�n,m � j,1 � lij � rij

}
is a basis of (V nm+V∞)/V∞,

(3)
{
a
lij
ij +V∞; i ∈N0,m � j,1 � lij � rij

}
is a basis of Vm/V∞.

Proof. Since V n0 is a finite-dimensional vector space it is artinian and
the decreasing sequence V n0 ⊃V n1 ⊃ · · · ⊃V nm ⊂V nm+1⊃ · · · stabilizes, that is,
there exists Mn ∈N0 such that V nm = V nMn

for every m � Mn, in particular
V nMn
=V n0 ∩V∞. If we choose for every n∈N0 the minimum Mn satisfying

this condition then Mn � Mn+1 since

V nMn+1
=V nMn+1

∩V n+1
Mn+1
=V n0 ∩VMn+1 ∩V n+1

0 ∩V∞=V n0 ∩V∞=V nMn
.

Notice that (1) is trivial for m � Mn since V nm = V np = V nMn
and

{alij ;1 � l � rij }=∅ whenever p � m � Mn, i � n and j � Mn. Therefore the
elements (n,m,p) for which we still have to check (1) lie in the set S =
{(n,m,p);n∈N0,0 � m � Mn,p � m}. Let us order this set in the following
way

(n,m,p) � (n′,m′, p′) ⇔






n<n′

or
n=n′ and m>m′

or
n=n′,m=m′ and p � p′.

One readily checks that this is a well order on S, since the second
coordinate has an upper bound (depending on the first one). The mini-
mum of S is (0,M0,M0), moreover if m<Mn the element (n,m,m) is the
least upper bound of {(n,m+ 1, p);p >m}, and given n > 0 the element
(n,Mn,Mn) is the least upper bound of the set {(n− 1,m,p);m�Mn−1,

p�m}. Any other element in S is a successor. We have already checked
(1) for the elements (n,Mn,p)∈ S, moreover, it is trivial for (n,m,m)∈ S,
hence (1) holds for the minimum and all limit elements in S. A generic
successor in S has the form (n,m,p+ 1) for some p�m. Notice that we
have already checked (1) for some successors as well, namely for those with
m=Mn. We are now going to proceed by induction, that is, we shall prove
(1) for every successor in S with m<Mn supposing that (1) holds for all
the strictly lower elements. We are going to distinguish three cases:

For (0,m,p+1) (1) follows from the exactness of the sequence

V 0
p

V 0
p+1

↪→ V 0
m

V 0
p+1

� V 0
m

V 0
p

,



44 FERNANDO MURO

the equality V −1
0 = 0 and the inequality (0,m,p) < (0,m,p + 1), and the

inequality (0, p+1, p)<(0,m,p+1) if p<M0 or the equalities V 0
p =V 0

p+1=
V 0
M0

and {al0p;1 � l� r0p}=∅ if p�M0.
For (n,m,m+1) with n>0 (1) is a consequence of the exactness of the

sequence

V n−1
m +V nm+1

V nm+1

↪→ V nm

V nm+1

� V nm

V n−1
m +V nm+1

,

the obvious isomorphism

V n−1
m

V n−1
m+1

� V
n−1
m +V nm+1

V nm+1

,

the inequality (n−1,m,m+1)<(n,m,m+1) if m<Mn−1, or the equalities
V n−1
m =V n−1

m+1=V n−1
Mn−1

and {alin;1 � l� rin}=∅ if i�n−1 and m�Mn−1.
For (n,m,p+1) with n>0 and p>m (1) follows from the exactness

of the sequence

V np

V np+1

↪→ V nm

V np+1

� V nm

V np
,

the inequality (n,m,p) < (n,m,p + 1), and the inequality (n,p,p + 1) <
(n,m,p+1) if p<Mn or the equalities V np =V np+1=V nMn

and {alip;1 � l� rip}=
∅ if i�n and p�Mn.

Once we have seen that (1) holds, (2) is a consequence of (1) for
p = Mn, the isomorphism (V nm + V∞)/V∞ � V nm/V nMn

, and the fact that
{alij ;1 � l� rij }=∅ is the empty set for i�n and j �Mn. Finally (3) follows
from (2) and the equality Vm=

⋃
n∈N0

V nm.
Proposition 7.14 is an interesting consequence of Lemma 7.13. It does

not hold in general when the ground ring is not a field, compare [1].

PROPOSITION 7.14. The image of a morphism between finitely generated
free Mk(T̄1)-modules is finitely generated free.

Proof. Let ϕ : k〈B〉β→ k〈A〉α be a morphism in Mk(T̄1). We can apply
Lemma 7.13 to the k-vector space V0 = ϕ(k〈B〉) and the subspaces Vn =
ϕ(k〈Bn〉)⊂k〈A〉 (n∈N) and V n0 =ϕ(k〈nB〉) (n� 0). Moreover, with the nota-
tion of that lemma V∞ = 0 since for every n� 1 there exists Nn� 1 such
that VNn ⊂ k〈An〉 and ∩n� 1k〈An〉 = 0. We define the set B = {alij ; i, j ∈
N0,1 � l� rij } and the function β : B→ N0 ⊂ [0,+∞) by β(alnm)=m. By
Lemma 7.13 (3) the set B is a basis of V0 and Bm a basis of Vm (m� 1)
since V∞=0. The function β is a height function because the cardi-
nal of β−1(m) is dim Vm/Vm+1 < ℵ0 (m ∈ N0). Moreover, the inclusion
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k〈B〉=ϕ(k〈B〉)⊂k〈A〉 and the projection k〈B〉� ϕ(k〈B〉)= k〈B〉 give rise
to controlled homomorphisms k〈B〉β ↪→ k〈A〉α and k〈B〉β � k〈B〉β which
are an Mk(T̄1)-module monomorphism and epimorphism, respectively, and
their composition is ϕ hence k〈B〉β together with these morphisms is the
image of ϕ.

COROLLARY 7.15. Any finitely presented Mk(T̄1)×module is the cokernel
of a monomorphism between finitely generated free Mk(T̄1)-modules.

COROLLARY 7.16. Finitely presented R-modules have projective dimension
� 1.

COROLLARY 7.17. We have Ext1(M,Cd)= 0 for any f. p. R-module M
and d ∈N∞.

Proof. By Corollary 7.16 the functor Ext1(M,−) is right-exact, hence
the corollary follows from Proposition 7.10 and Corollary 7.12.

Now we begin with the lemmas which prove Theorem 7.2.

LEMMA 7.18. Given any f. p. R-module M, there exists another f. p.
R-module N with λN =0 such that M�AλM⊕N .

Proof. Suppose that M=Coker ϕ for some ϕ :k〈B〉β→k〈A〉α in Mk(T̄1).
Let us consider the decreasing sequence of k-vector spaces given by
V0=k〈A〉/ϕ(k〈B〉) and

Vn= k〈An〉+ϕ(k〈B〉)
ϕ(k〈B〉) , n∈N.

The vector space V0 is the union of the following sequence of
finite-dimensional k-vector spaces (n∈N0)

V n0 =
k〈nA〉+ϕ(k〈B〉)

ϕ(k〈B〉) .

If {alnm;1 � l� rnm}⊂V nm is a set as in Lemma 7.13 we can suppose that
alnm = elnm + ϕ(k〈B〉) for some elnm ∈ k〈nAm〉, here we use the next obvious
isomorphism

k〈nAm〉
k〈nAm〉∩ϕ(k〈B〉) �

k〈nAm〉+ϕ(k〈B〉)
ϕ(k〈B〉) =V nm.

We consider the set C={alnmnm+V∞;n,m∈N0,1 � lnm� rnm} and the func-
tion γ :C→N0⊂ [0,+∞) with γ (alnmnm+V∞)=m. This function is a height
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function, since the set γ−1(m)={alnmnm+V∞;n∈N0,1 � lnm� rnm} is bijective
with a basis of Vm/Vm+1 by Lemma 7.13 (3), and we have the following
surjection and isomorphisms

k〈Am〉
k〈Am+1〉�

k〈Am〉
k〈Am+1〉+ [ϕ(k〈B〉)∩k〈Am〉] �

k〈Am〉+ϕ(k〈B〉)
k〈Am+1〉+ϕ(k〈B〉) �

Vm

Vm+1
,

where dim k〈Am〉/k〈Am+1〉 = card α−1(m) < ℵ0. The underlying k-vector
space of k〈C〉γ is V0/V∞, moreover, the natural projection

k〈A〉� k〈A〉
⋂

n� 1
[k〈An〉+ϕ(k〈B〉)] �

V0

V∞
=k〈C〉 (a)

gives rise to a T̄1-controlled homomorphism v0 : k〈A〉α→ k〈C〉γ with v0ϕ=
0, hence v0 induces a morphism v : M→ k〈C〉γ . Furthermore, the sec-
tion V0/V∞ ↪→ k〈A〉 which sends alnm + V∞ to elnm determines another
T̄1-controlled homomorphism τ0 : k〈C〉γ → k〈A〉α with v0τ0= 1, in particu-
lar if τ : k〈C〉γ →M is the morphism induced by τ0 we have that vτ =
1, hence M� k〈C〉γ ⊕N where N =Coker τ . Notice that the morphism
(ϕ, τ0) :k〈B〉β⊕k〈C〉γ→k〈A〉α is a finite presentation of N , and by (a) we
have the following equality and inclusions for every m� 1

k〈A〉=
⋂

n�1

[k〈An〉+ϕ(k〈B〉)]⊕ τ(k〈C〉)⊂k〈Am〉+ϕ(k〈B〉)+ τ(k〈C〉)⊂k〈A〉,

therefore λN =0.
Observe that by Lemmas 7.6 and 7.7 k〈C〉γ is isomorphic to the free T̄1-

controlled k-vector space which corresponds to R provided λM=∞, and
to the direct sum of λM copies of A otherwise.

LEMMA 7.19. Given a f. p. R-module M with λM=0, there exists another
f. p. R-module N with λN =µN =0 such that M�BµM⊕N .

Proof. Suppose that M is the cokernel of ϕ : k〈B〉β→ k〈A〉α in Mk(T̄1).
Since λM=0 we have that k〈A〉= k〈Am〉+ϕ(k〈B〉) for every m∈N. Let V•
be the inverse system indexed by N×N given by

Vmn= k〈Am〉
k〈Am〉∩ϕ(k〈Bn〉) ,

and bonding homomorphisms induced by the obvious inclusions of vector
spaces. There are inclusions Uϕ

mn⊂Vmn with quotients

k〈Am〉
k〈Am〉∩ϕ(k〈B〉) �

k〈Am〉+ϕ(k〈B〉)
ϕ(k〈B〉) = k〈A〉

ϕ(k〈B〉) .
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This determines a short exact sequence in the category of pro-vector
spaces

Uϕ
• ↪→V•�

k〈A〉
ϕ(k〈B〉) . (a)

Here we regard k〈A〉/ϕ(k〈B〉) as the inverse system indexed by a singleton.
The vector space U

ϕ
mn is always finite dimensional, because it is con-

tained in ϕ(k〈B〉)/ϕ(k〈Bn〉) � ϕ(k〈n−1B〉) and n−1B is a finite set. Since
finite-dimensional vector spaces are artinian it is easy to see that Uϕ

•
satisfies the Mittag–Leffler property, in particular lim1

Uϕ
• = 0 and hence

by (5.b) Ext1(k〈A〉/ϕ(k〈B〉),Uϕ
• ) = 0, so the sequence (a) admits a split-

ting s : k〈A〉/ϕ(k〈B〉) ↪→ V•. This splitting is given by splittings smn :
k〈A〉/ϕ(k〈B〉) ↪→Vmn of the natural projections Vmn � k〈A〉/ϕ(k〈B〉) which
are compatible with the bonding homomorphisms of V•.

Let C̃ be a basis of k〈A〉/ϕ(k〈B〉). This basis is either finite C̃ =
{b1, . . . , bµM} if µM ∈ N0, or infinite countable C̃ = {bn}n∈N0 if µM =
∞. Moreover, since ϕ is controlled there exists an increasing sequence
of natural numbers {ln}n� 1 with ϕ(k〈Bln〉) ⊂ k〈An〉. We choose elements
bn−1
m ∈ k〈An〉 and yn−1

m ∈ k〈Bln〉 such that bn−1
m +ϕ(k〈Bln〉)= sn,ln(bm)∈Vn,ln =

k〈An〉/ϕ(k〈Bln〉) and ϕ(yn−1
m )= bnm− bn−1

m for every n∈N and m in the cor-
responding range. Furthermore, we define the sets nC⊂ k〈An+1〉 and C in
the following way: nC={bn1, . . . , bnµM} and C=∐n∈N0

nC= if µM∈N0, and
nC = {bn0, . . . , bnn} ∪ {bmm;m>n} and C =⋃n∈N0

nC = {bnm;n�m� 0} if µM=
∞. Let γ :C→N0⊂ [0,+∞) be the height function given by γ (bnm)=n and
ψ the endomorphism of k〈C〉γ given by ψ(bnm)=bn+1

m −bnm.
One readily checks that Coker ψ=i(k〈A〉/ϕ(k〈B〉)) and the natural pro-

jection k〈C〉γ �i(k〈A〉/ϕ(k〈B〉)) is given by the homomorphism p1:k〈C〉→
k〈A〉/ϕ(k〈B〉)= k〈C̃〉 defined by p1(b

n
m)= bm. For this one uses the finite

presentations constructed in the proof of Proposition 4.3 and, if µM=∞,
the bijection N0≈C which sends m∈N0, with n(n− 1)/2 �m<(n+ 1)n/2
for some n∈N0, to bn−1

m− n(n−1)
2

. Moreover, by Proposition 7.11 Cokerψ=BµM .

The homomorphism τ0 : k〈C〉 → k〈A〉 induced by the inclusions nC ⊂
k〈An+1〉⊂ k〈A〉 determines a controlled homomorphism τ0 : k〈C〉γ→ k〈A〉α.
Moreover, the homomorphism τ1 :k〈C〉→k〈B〉 given by τ1(b

n
m)=ynm defines

a controlled homomorphism τ1 : k〈C〉γ → k〈B〉β with ϕτ1 = τ0ψ , hence τ0

gives rise to a Mk(T̄1)-module morphism τ :BµM→M.
Let us check that τ is a monomorphism. Given a free T̄1-controlled

vector space k〈D〉φ Yoneda’s lemma yields a natural identification
HomR(k〈D〉φ,i(k〈A〉/ϕ(k〈B〉)))=Homk(k〈D〉, k〈A〉/ϕ(k〈B〉)). This identifi-
cation carries a morphism v : k〈D〉φ→ i(k〈A〉/ϕ(k〈B〉)) represented by v0 :
k〈D〉φ→ k〈C〉γ to the vector space homomorphism p1v0. If p2 : k〈A〉�
k〈A〉/ϕ(k〈B〉) is the natural projection then p2ϕ= 0 and p1=p2τ0. More-
over τv = 0 if and only if τ0v0 = ϕη for some controlled homomorphism
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η : k〈D〉φ→ k〈B〉β , so in this case p1v0=p2τ0v0=p2ϕη= 0, that is, v= 0,
therefore τ is a monomorphism.

By Corollary 7.12 if N =Coker τ then M�BµM ⊕N . The morphism
(ϕ, τ0) : k〈B〉β ⊕ k〈C〉γ → k〈A〉α is a finite presentation of N and by con-
struction ϕ(k〈B〉)+ τ0(k〈C〉)=k〈A〉, it is λN =µN =0.

LEMMA 7.20. Let M be a f. p. R-module with λM=µM= 0 then there
exists another one N with λN =µN =νN =0 such that M�CνM⊕N .

In the proof of this lemma we shall use the following.

LEMMA 7.21. Let {dn}n∈N be an increasing sequence of integers with
lim
n→∞dn=∞. Consider the set A={(n,m);n∈N,m�dn}⊂N×N, the height

function α :A→N0⊂ [0,+∞) with α(n,m)=n, and the endomorphism ϕ of
k〈A〉α with ϕ(n,m)= (n,m) if n= 1 or n> 1 and m>dn−1, and ϕ(n,m)=
(n,m)− (n−1,m) otherwise. Then Cokerϕ is isomorphic to C∞.

Proof. Consider the infinite countable subsets

A1={(1,m);1 �m�d1}∪ {(n,m);n>1, dn−1<m�dn}⊂A,
A2=A−A1, B1={(n+1)n/2}n∈N0⊂N0 and B2=N0−B1. The lexicographic
order from the left on A is a well order without limit elements, since the
second coordinate of an element (n,m) ∈A is bounded by dn, hence the
restriction of this order to the subsets A1 and A2 induces enumerations
A1={en1}n∈N0 and A2={en2}n∈N0 . Similarly the usual order in N0 induces enu-
merations in the subsets B1={f n1 }n∈N0 and B2={f n2 }n∈N0 . Now the theorem
follows from the bijection N0≈A which sends f ni to eni (i=1,2;n∈N0).

Proof of Lemma 7.20. If M = Coker [ϕ : k〈B〉β → k〈A〉α] the equalities
λM = µM = 0 are equivalent to ϕ(k〈B〉)= k〈A〉. Let φ : lim Uϕ

• → Uϕ
• be

the canonical pro-morphism. This pro-morphism is given by vector space
homomorphisms φmn : lim Uϕ

• →U
ϕ
mn compatible with the bonding homo-

morphisms of Uϕ
• . Since ϕ is controlled there is an increasing sequence of

natural numbers {mn}n� 1 such that ϕ(k〈Bmn〉)⊂k〈An〉.
If νM ∈ N0 and {a1, . . . , aνM} is a basis of lim Uϕ

• , we define nC =
{an1 , . . . , anνM} ⊂ k〈An〉 as a set such that φn,mn(ai) = ani + ϕ(k〈Bmn〉)
(1 � i� νM), and choose elements yni ∈ k〈Bmn−1〉 if n>1 and y1

i ∈ k〈B〉 with
ani −an−1

i =ϕ(yni ) (n>1) and a1
i =ϕ(y1

i ). If νM=∞ we take nC={ani }dni=1⊂
k〈An〉 such that {ani + ϕ(k〈Bmn〉)}dni=1 is a basis of φn,mn(lim Uϕ

• ), here we
use that Uϕ

• is an inverse system of finite-dimensional vector spaces, com-
pare the proof of Lemma 7.19. The bonding homomorphisms of Uϕ

• induce
surjections φn+1,mn+1(lim Uϕ

• )� φn,mn(lim Uϕ
• ), hence dn�dn+1 and we can
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suppose without loss of generality that there exist yni ∈k〈Bmn−1〉 (n>1) and
y1
i ∈k〈B〉 such that ani −an−1

i =ϕ(yni ) if n>1 and i�dn−1, and ani =ϕ(yni ) if
n>1 and dn−1<i�dn or n=1 and i�d1.

We define the height function γ :C=∐n� 1
nC→N0⊂ [0,+∞) as γ (ani )=

n, and the controlled homomorphisms τ0 : k〈C〉γ → k〈A〉α, τ1 : k〈C〉γ →
k〈B〉β , ψ : k〈C〉γ→ k〈C〉γ by τ0(a

n
i )=ani , τ1(a

n
i )=yni , and ψ(ani )=ani −an−1

i

if n> 1, and νM ∈N0 or νM=∞ and i�dn−1, and ψ(ani )= ani otherwise.
One can readily check, by using the bijection N≈N0 :n 
→n−1 if νM∈N0

or Lemma 7.21 if νM=∞, that Cokerψ �CνM . Moreover, (τ1, τ0) :ψ→ϕ

is a morphism in pair(Mk(T̄1)) which induces an R-module morphism τ :
CνM→M.

In order to check that τ is a monomorphism of Mk(T̄1)-modules we first
prove that φ above is a monomorphism of pro-vector spaces if νM∈N0. In
this case Kerφ is an inverse system of finite-dimensional vector spaces, in
particular it satisfies the Mittag–Leffler property. If we apply the left-exact
functor lim to the exact sequence of pro-vector spaces

Kerφ ↪→ lim Uϕ
•

φ−→Uϕ
•

we get another one

lim Kerφ ↪→ lim lim Uϕ
•
=−→ lim Uϕ

• ,

so lim Kerφ= 0 and hence Kerφ= 0 by [12], II.6.2 Lemma 2, therefore φ
is a monomorphism. In particular there exists N ∈N big enough such that
φn,mn is an injective homomorphism for every n�N . We set N=1 if νM=
∞. Now it is easy to see that the injection ψn : k〈Cn+1〉 ↪→ k〈Cn〉 given by
the restriction of ψ is the kernel of the next composite (n�N)

k〈Cn〉 τ0→ k〈An〉� k〈An〉
ϕ(k〈Bmn〉) =U

ϕ
n,mn

.

Any morphism v : k〈D〉χ→ CνM is represented by a controlled homomor-
phism v0 : k〈D〉χ→k〈C〉γ . Suppose that τv=0. This means that there exists
another controlled homomorphism η : k〈D〉χ → k〈B〉β with τ0v0 = ϕη. By
the alternative characterization of controlled homomorphisms given in Sec-
tion 3.1 we see that there exists an increasing sequence of natural num-
bers {pn}n� 1 such that ν0(k〈Dpn〉)⊂k〈Cn〉 and η(k〈Dpn〉)⊂k〈Bmn〉. Hence if
n�N then there exists a unique homomorphism σn : k〈Dpn〉→k〈Cn+1〉 such
that ψnσn : k〈Dpn〉→ k〈Cn〉 is the restriction of v0. If σ : k〈pN−1D〉→ k〈C〉
is any homomorphism such that ψσ ′ coincides with the restriction of ν0

to k〈pN−1D〉 we define the controlled homomorphism σ : k〈D〉χ→ k〈C〉 by
σ(d)=σn(d) if d ∈pn+1−1Dpn(n�N) and σ(d)=σ ′(d) if d ∈pN−1D. This con-
trolled homomorphism satisfies ψσ = ν0 therefore v= 0 and hence τ is a
monomorphism.
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Since τ is a monomorphism if we define N =Coker τ we get by Corol-
lary 7.17 that M� CνM ⊕N . Now one can check that λN =µN = νN = 0
by using that N =Coker [(ϕ, τ0) :k〈B〉β⊕k〈C〉γ→k〈A〉α].

LEMMA 7.22. If M is a f. p. R-module with λM = µM = νM = 0 then
M=0.

Proof. If M=Coker[ϕ : k〈B〉β→ k〈A〉α] the conditions of the statement
are equivalent to ϕ(k〈B〉)= k〈A〉 and lim Uϕ

• = 0. In the proof of Lemma
7.19 we checked that Uϕ

• satisfies the Mittag–Leffler property, hence Uϕ
• =0

is a trivial pro-vector space by [12], II.6.2 Lemma 2. This means that if
{mn}n� 1 is an increasing sequence such that ϕ(k〈Bmn〉)⊂k〈An〉 (see Section
3.1) then there exists another increasing sequence {pn}n� 1 such that the
next bonding homomorphisms

Uϕ
pn+1,mpn+1

= k〈Apn+1〉
ϕ(k〈Bmpn+1

〉)
0−→ k〈Apn〉
ϕ(k〈Bmpn 〉)

=Uϕ
pn,mpn

are trivial, that is, k〈Apn+1〉⊂ϕ(k〈Bmpn 〉). Hence we can define a controlled
homomorphism ψ : k〈A〉α→k〈B〉β sending a∈pn+2−1Apn+1(n� 1) to any ele-
ment b ∈Bmpn such that ϕ(b)= a, and if a ∈ p2A we take any ψ(a)= b ∈
k〈B〉 such that ϕ(b) = a. This morphism satisfies ϕψ = 1 hence ϕ is an
epimorphism and M=Cokerϕ=0.

8. Representations of the n-Subspace Quiver

In this section we recall well-known facts one the representation theory
of the n-subspace quiver. We also define and briefly study a new class
of n-subspaces which we call rigid. These results will play an important
role in our treatment of the representation theory of the algebras k(n), see
Sections 9 and 10.

The n-subspace quiver Qn is the following directed graph

Fixed any field k, a representation V of Qn is a diagram of k-vector
spaces indexed by Qn, that is, n+ 1 vector spaces V0, V1, . . . , Vn together
with homomorphisms Vi → V0 (1 � i�n). Morphisms of representations
are commutative diagrams. The category repQn

of representations of Qn

is an abelian category. It is equivalent to the category of kQn-modules,
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where kQn is the path algebra of Qn, whose dimension is dim kQn =
2n+ 1. A representation is said to be finite-dimensional provided Vi is a
finite-dimensional vector space for every 0 � i�n. Finitely presented (or
equivalently finite-dimensional) kQn-modules correspond to finite-dimen-
sional representations under the equivalence above and indecomposable
representations are finite-dimensional, hence by the classical Krull–Schmidt
theorem the monoid Iso(repfin

Qn
) of isomorphisms classes of finite-dimen-

sional representations of Qn is the free abelian monoid generated by the
(isomorphism classes of) indecomposable representations. The representa-
tion type of the quiver Qn is that of its path algebra.

An n-subspace V is a representation of Qn such that the homo-
morphisms Vi → V0 are inclusions of subspaces Vi ⊂ V0 (1 � i�n). The
category subn (resp. subfin

n ) of (finite-dimensional) n-subspaces is a full
additive (small) subcategory of repQn

(resp. repfin
Qn

). In fact direct summands
in repQn

of n-subspaces are also n-subspaces, hence

PROPOSITION 8.1. Iso(subfin
n ) is the free abelian monoid generated by the

isomorphism classes of indecomposable n-subspaces.

Up to isomorphism there are just n indecomposable representations
of Qn which are not n-subspaces, namely those with Vi = k for some
1 � i�n and Vj =0 if j �= i, therefore, we have the following.

PROPOSITION 8.2. The representation type of subfin
n is the same as the rep-

resentation type of the n-subspace quiver.

We say that an n-subspace V is rigid provided Vi⊂
∑

j �=0,i Vj (1 � i�n)
and V0 =

∑n
i=1 Vi . As above, the category subrig

n (resp. subfr
n ) of (finite-

dimensional) rigid n-subspaces is an additive (small) subcategory of subn
(resp. subfin

n ) and direct summands of rigid n-subspaces are also rigid, so
we get the following result.

PROPOSITION 8.3. Iso(subfr
n ) is the free abelian monoid generated by the

isomorphism classes of indecomposable rigid n-subspaces.

There is an additive ‘rigidification’ functor

subn→ subrig
n :V 
→V vig

given by V
rig
i = Vi ∩ (

∑
j �=0,i Vj ) (1 � i�n) and V

rig
0 =
∑n

i=1 V
rig
i , which is

right-adjoint to the inclusion subrig
n ⊂ subn and preserves finite-dimensional

objects. The unit of this adjunction is the obvious natural inclusion
V rig⊂V , which is an equality if and only if V is already rigid.
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In order to determine indecomposable rigid n-subspaces we consider
the full inclusions of additive categories F

i : sub1→ subn (1 � i�n) send-
ing a 1-subspace W to the n-subspace F

iW = iW with iW0 = W0,
iWi =

W1 and iWj =0 otherwise.

PROPOSITION 8.4. The natural inclusion V rig⊂V admits a (not natural)
retraction in subn. More precisely, there exist 1-subspaces V i (1 � i�n) and
an isomorphism V � (⊕n

i=1 F
iV i)⊕V rig such that the natural inclusion V rig⊂

V corresponds to the inclusion of the direct summand.

Proof. By using the definition of V rig we see that there is a short exact
sequence of vector spaces

n⊕

i=1

Vi

V
rig
i

↪→ V0

V
rig

0

� V0
∑n

i=1 Vi
.

We define the 1-subspaces V i (1 � i�n) as V 1
0 =(V0/

∑n
i=1 Vi)⊕(V1/V

rig
1 ),V 1

1 =
V1/V

rig
1 and V i0 = V i1 = Vi/V rig

i if 1 � i�n. Now the isomorphism of the
statement follows from the previous exact sequence.

By this proposition an indecomposable n-subspace is rigid unless it is
isomorphic to F

iV for some indecomposable 1-subspace V and 1 � i�n.
It is known that such V must be either k→ k or 0→ k, so there are just
2n indecomposable n-subspaces which are not rigid, and 3n indecompos-
able representations of Qn which are not rigid n-subspaces, in particular,
we have the following.

PROPOSITION 8.5. The category subfr
n has the same representation type as

the n-subspace quiver.

Remark 8.6. The representation type of the n-subspace quiver is well-
known. It is finite for n<4, tame for n=4 and wild if n>4 (see [8,15]).

In [8] the finite sets of indecomposable representations of Qn are
described for n<4 hence discarding the 3n indecomposable representations
previously described which are not rigid n-subspaces we get the next result.

PROPOSITION 8.7. The following are complete lists of (representatives of
the isomorphism classes of) indecomposable rigid n-subspaces for n<4

• n = 1, none,
• n = 2, V (2,1)= (k→k←k),
• n = 3,
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V (3,1)=



k

↓
k→ k ← 0



 , V (3,2)=



0
↓

k→ k ← k



 ,

V (3,3)=



k

↓
0→ k ← k



 , V (3,4)=



k

↓
k→ k ← k



 ,

V (3,5)=



k〈x+y〉
↓

k〈x〉 → k〈x, y〉 ← k〈y〉



 .

Remark 8.8. In [15] there is a (not finite) list of indecomposable repre-
sentations of Q4 . We do not include the list here because it is quite tedious
to describe, however the interested reader can easily find and remove the
12 indecomposable representations of Q4 which are not rigid 4-subspaces,
obtaining in this way a complete list of indecomposable rigid 4-subspaces .

9. Finitely Presented k(n)-Modules and Finite-dimensional n-Subspaces

Once we have solved in Section 7 the decomposition problem for f. p.
k(1)- modules in this section we relate the representation theory of k(n)
and the n-subspace quiver. This will somehow allow us to decompose
the representation problem for f. p. k(n)-modules into the problem for
finite-dimensional rigid n-subspaces and n times the problem for f. p. k(1)-
modules, (see Theorem 10.1).

Given an n-subspace V we define MV : Mk(T̄n)
op→Ab as the additive

functor which sends an object k〈A〉α to the vector subspace MV (k〈A〉α)⊂
Homk(k〈A〉, V0) formed by the homomorphisms φ : k〈A〉→ V0 such that
there exists M � 1 depending on φ satisfying φ(AiM)⊂ Vi (1 � i�n). This
construction defines an exact full inclusion of additive categories

M : subn→mod(Mk(T̄n)). (9.a)

PROPOSITION 9.1. If V is a finite-dimensional n-subspace then the Mk(T̄n)-
module MV is finitely presented.

Proof. Let {w1, . . . ,wd} be a basis of V0, {wi1, . . . ,widi } a basis of
Vi (1 � i�n), and φi :Vi → V0 the inclusion. We define the sets D =
{mwi1, . . . , mwidi ;1 � i�n,m� 1} and C = D � {w1, . . . ,wd}, and the height
functions γ : C → T 0

n and δ : D → T 0
n with γ (wj) = v0 (1 � j �d) and

γ (mw
i
j ) = δ(mwij ) = vim (1 � i�n,1 � j �di,m� 1). Let ρ : k〈D〉δ → k〈C〉γ

be the controlled homomorphism defined as ρ(mw
i
j ) = mw

i
j − m−1w

i
j if

m>1 and ρ(1w
i
j ) = 1w

i
j − φi(wij ) otherwise, and p : k〈C〉γ → MV the
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Mk(T̄n)-module morphism determined by the k-vector space homomor-
phism p0 : k〈C〉→V0 with p0(wj )=wj and p0(mw

i
j )=φi(wij ). Here we use

that Hom(k〈C〉γ ,MV )=MV (k〈C〉γ ) by Yoneda’s lemma. Now it is imme-
diate to check that MV = Coker ρ and p is the natural projection.

One can check by using the finite presentation constructed in the proof
of Proposition 9.1 that follows.

COROLLARY 9.2. If V is a finite-dimensional rigid n-subspace then
�n([MV ])=0.

By Proposition 9.1 the additive functor in (9.a) restricts to a functor M :
subfin

n → fp(Mk(T̄n)). Now we are going to construct a functor in the oppo-
site direction. For this if ϕ : k〈B〉β→ k〈A〉α is a morphism in Mk(T̄n) we
define the k-vector spaces (1 � i�n)

W
ϕ

i =
⋂
m� 1

{
[k〈Aim〉+ϕ(k〈B〉)]∩

[∑
j �=i k〈Ajm〉+ϕ(k〈B〉)

]}

ϕ(k〈B〉) .

Here we use the notation introduced in Section 3.1. This notation will be
used along this section without any further mention.

PROPOSITION 9.3. The vector space Wϕ

i is finite-dimensional (1 � i�n).

This proposition is an immediate consequence of the following lemma.

LEMMA 9.4. For any m� 1

dim
[k〈Aim〉+ϕ(k〈B〉)]∩

[∑
j �=i k〈Ajm〉+ϕ(k〈B〉)

]

ϕ(k〈B〉) <ℵ0.

Proof. One readily checks that

[k〈Aim〉+ϕ(k〈B〉)]∩



∑

j �=i
k〈Ajm〉+ϕ(k〈B〉)





=k〈Aim〉∩



∑

j �=i
k〈Ajm〉+ϕ(k〈B〉)



+ϕ(k〈B〉),
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therefore

[k〈Aim〉+ϕ(k〈B〉)]∩
[∑

j �=i k〈Ajm〉+ϕ(k〈B〉)
]

ϕ(k〈B〉)

�
k〈Aim〉∩

[∑
j �=i k〈Ajm〉+ϕ(k〈B〉)

]

k〈Aim〉∩ϕ(k〈B〉)
. (a)

Since ϕ is a controlled homomorphism there exists M � 1 such that
ϕ(BiM)⊂k〈Aim〉 (1 � i�n), hence
∑

j �=i
k〈Ajm〉+ϕ(k〈B〉)=

∑

j �=i
k〈Ajm〉+ϕ(k〈M−1B〉)+ϕ(k〈BiM〉). (b)

The set M−1B is finite, hence there exists N � 0 big enough with
ϕ(M−1B)⊂ k〈NA〉. Let us check that the next homomorphism induced by
the inclusion NA

i
m⊂Aim is an isomorphism

k〈NAim〉∩
[∑

j �=i k〈Ajm〉+ϕ(k〈B〉)
]

k〈NAim〉∩ϕ(k〈B〉)
→
k〈Aim〉∩

[∑
j �=i k〈Ajm〉+ϕ(k〈B〉)

]

k〈Aim〉∩ϕ(k〈B〉)
.

(c)

The injectivity is obvious. Now by (b) an arbitrary element in the range
of (c) is represented by an element ai ∈ k〈Aim〉 such that there are aj ∈
k〈Ajm〉 (j �= i), a′i ∈ k〈Aim〉 ∩ϕ(k〈B〉), b∈ϕ(k〈M−1B〉), and bi ∈ϕ(k〈BiM〉) such
that
∑

j �=i
aj +b+bi=ai+a′i ,

but ai+a′i−bi ∈k〈Aim〉, (⊕nj=1k〈Ajm〉)∩k〈NA〉=⊕nj=1k〈NAjm〉, and
∑

j �=i aj −
(ai +a′i −bi)=b∈ k〈NA〉, therefore aj , ai +a′i −bi ∈ k〈NA〉 (j �= i), and a′i −
bi ∈ k〈Aim〉 ∩ ϕ〈B〉, so ai + a′i − bi represents the same element as ai in the
range of (c), hence the homomorphism (c) is surjective. Now the proposi-
tion follows from the isomorphisms (a) and (c), and the finiteness of the
set NA

i
m.

By Proposition 9.3 the vector space W
ϕ

0 =
∑n

i=1W
ϕ

i together with the
subspaces Wϕ

1 , . . .,W
ϕ
n define a finite dimensional n-subspace Wϕ .

PROPOSITION 9.5. There is an additive functor S : fp(Mk(T̄n))→ subfin
n

which sends M=Coker ϕ to SM=Wϕ.

Proof. By using the alternative description of controlled homomor-
phisms in Mk(T̄n) given in Section 3.1 one can easily check that the
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correspondence ϕ 
→Wϕ is a functor from pair(Mk(T̄n)) to the category of
n-subspaces. Furthermore, this functor factors through the natural equiva-
lence relation ∼, therefore the proposition follows by Proposition 2.1.

The functors S and M are not adjoint. Moreover, one readily checks
that the following proposition holds.

PROPOSITION 9.6. The n-subspace SM is rigid for every f. p. Mk(T̄n)-
module M. Moreover, given a finite-dimensional n-subspace V there is a
natural isomorphism SMV �V rig.

For the second statement of the proposition one uses the finite presen-
tations constructed in the proof of Proposition 9.1.

COROLLARY 9.7. The image of the functor S is the category of finite-
dimensional rigid n-subspaces.

COROLLARY 9.8. For every f. p. Mk(T̄n)-module M there is a natural iso-
morphism SMSM�SM.

As we pointed out in the introduction a key step to obtain a pre-
sentation of Iso(fp(Mk(T̄n))) is relating the decomposition problem in
fp(Mk(T̄n)) to the decomposition problem in fp(Mk(T̄1)) and subfin

n . This is
what we do in Propositions 9.9 and 9.10.

PROPOSITION 9.9. For any f. p. Mk(T̄n)-module M there exists another
one N with SN =0 such that M�N ⊕MSM.

Proof. Suppose that M is the cokernel of ϕ : k〈B〉β→k〈A〉α in Mk(T̄n).
By the alternative description of controlled homomorphisms given in
Section 3.1 we can choose an increasing sequence of natural numbers
{Mm}m � 1 with ϕ(BiMm

)⊂k〈Aim〉 (1 � i�n). We define the inverse systems of
vector spaces Xi•, Y

i
•,Z

i
• (1 � i�n) indexed by N in the following way

Xim=
ϕ(k〈B〉)
ϕ(k〈BiMm

〉) ,

Y im=
[k〈Aim〉+ϕ(k〈B〉)]∩

[∑
j �=i k〈Ajm〉+ϕ(k〈B〉)

]

ϕ(k〈BiMm
〉) ,

Zim=
[k〈Aim〉+ϕ(k〈B〉)]∩

[∑
j �=i k〈Ajm〉+ϕ(k〈B〉)

]

ϕ(k〈B〉) .
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The bonding homomorphisms are induced by the obvious inclusions of

vector spaces. The short exact sequences Xim ↪→ Y im
pmi�Zim are compati-

ble with the bonding homomorphisms, so they give rise to short exact
sequences Xi• ↪→ Y i•

pi�Zi• in the abelian category of pro-vector spaces.
Moreover, lim Zi• =∩m � 1Z

i
m=Wϕ

i . Let ψi : Wϕ

i →Zi• be the canonical pro-
morphism, which is induced by the inclusions Wϕ

i ⊂Zim. Here we regard Wϕ

i

as an inverse system indexed by a singleton.
The bonding homomorphisms of the inverse system Xi• are surjective,

therefore lim1
Xi• = 0, and by (5.b) Ext1(W

ϕ

i ,X
i
•)= 0, so there exists a pro-

morphism ψ̃i such that the next diagram commutes

The pro-morphism ψ̃i is represented by a sequence of homomorphisms
ψ̃m
i : Wϕ

i → Y im(m � 1) which are compatible with the bonding homomor-
phisms of Y i• , and such that the composition pmi ψ̃

m
i :Wϕ

i ⊂Zim is the inclu-
sion.

If {ai1, . . . , aidi } is a basis of Wϕ

i we can choose elements {mai1, . . . , maidi }⊂
k〈Aim〉 (m � 1) such that ψ̃m

i (a
i
j )=ma

i
j +ϕ(k〈BiMm

〉). In particular, since the
homomorphisms ψ̃m

i are compatible with the bonding homomorphisms of
Y i• , we see that there are elements m+1b

i
j ∈ k〈BiMm

〉 satisfying m+1a
i
j −ma

i
j =

ϕ(m+1b
i
j ). Moreover, let {a1, . . . , ad} be a basis of Wϕ

0 , σ : k〈A〉/ϕ(k〈B〉) ↪→
k〈A〉 a splitting of the natural projection, and elements 1b

i
j ∈k〈B〉 such that

ϕ(1b
i
j )= 1a

i
j −σ(1aij +ϕ(k〈B〉)).

If ρ is the finite presentation of MSM constructed in the proof of
Proposition 9.1, there is a morphism τ : ρ→ ϕ in pair(Mk(T̄n)) given by
τ0(wi)=σ(ai), τ0(mw

i
j )=ma

i
j , and τ1(mw

i
j )=mb

i
j . This morphism induces a

Mk(T̄n)-module morphism τ : MSM→M. Now we are going to construct
a retraction of τ .

By Lemma 9.4 Zim is always finite-dimensional and W
ϕ

i = ∩m � 1Z
i
m,

hence there exists N � 1 such that Wϕ

i =ZiN for every 1 � i � n. Let V
be the n-subspace given by V0= k〈A〉/ϕ(k〈B〉) and Vi =

[
k〈AiN 〉+ϕ(k〈B〉)

]
/

ϕ(k〈B〉). Clearly SM=V rig⊂V , hence by Proposition 8.4 there is a retrac-
tion r :V →SM. By Yoneda’s lemma Hom(k〈A〉α,MV )=MV (k〈A〉α). The
natural projection k〈A〉�V0 gives rise to a Mk(T̄n)-module morphism v0 :
k〈A〉α→MV such that v0ϕ = 0. Moreover, since M=Coker ϕ we have
Hom(M,MV )=Ker Hom(ϕ,MV ), in particular v0 determines a Mk(T̄n)-
module morphism v : M→MV . One readily checks that the composite
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(Mr)v0τ0 coincides with the natural projection p: k〈C〉γ � MSM = Coker
ρ defined in the proof of Proposition 9.1, hence (Mr)vτ = 1 is the identity
on MSM, and (Mr)v is the desired retraction of τ . Now if we take N to be
the cokernel of τ the proposition follows since M=N ⊕MSM, by Corollary
9.8 SM=SN ⊕SMSM�SN ⊕SM and hence SN =0. Here we use that the
monoid Iso(subfin

n ) is free and hence cancelative, compare Section 8.

In Proposition 9.10 we use the change of coefficients F
i
∗ associated to

the additive functors F
i : Mk(T̄1)→Mk(T̄n) in Remark 6.5.

PROPOSITION 9.10. Given a f. p. Mk(T̄n)-module M, SM = 0 is trivial
if and only if there exist f. p. Mk(T̄1)-modules Mi (1 � i � n) with M �
F

1
∗M1⊕· · ·⊕F

n
∗Mn.

Proof. It is easy to see that SF
i
∗ =0 (1 � i � n), and S is additive, so the

implication ⇐ follows. Now suppose that M=Coker [ϕ : k〈B〉β→ k〈A〉α]
and SM=0. Since finite-dimensional vector spaces are artinian, by Lemma
9.4 there exists m � 1 big enough such that for every 1 � i � n,
[
k〈Aim〉+ϕ(k〈B〉)

]∩
[∑

j �=i k〈Ajm〉+ϕ(k〈B〉)
]

ϕ(k〈B〉) =0,

that is, the following equality holds (the isomorphism on the right always
holds)
∑n

i=1 k〈Aim〉+ϕ(k〈B〉)
ϕ(k〈B〉) =

n⊕

i=1

k〈Aim〉+ϕ(k〈B〉)
ϕ(k〈B〉) �

n⊕

i=1

k〈Aim〉
k〈Aim〉∩ϕ(k〈B〉)

.

This is equivalent to state that
[

n⊕

i=1

k〈Aim〉
]

∩ϕ(k〈B〉)=
n⊕

i=1

[
k〈Aim〉∩ϕ(k〈B〉)

]
. (a)

By the characterization of controlled homomorphisms in Section 3.1
there exists M � 1 with ϕ(BiM)⊂ k〈Aim〉 (1 � i � n). Let K be the kernel of
the vector space homomorphism underlying to ϕ, that is K=ϕ−1(0). There
is a finite set {b1, . . ., bd}⊂k〈B〉 which projects to a basis of

K+ (⊕n
i=0 k〈BiM〉

)

⊕n
i=0 k〈BiM〉

� K

K ∩ (⊕n
i=0 k〈BiM〉

) ,

since this vector space is contained in

k〈B〉
⊕n

i=0 k〈BiM〉
�k〈M−1B〉,

and M−1B is finite.
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There is also a finite set {ai1, . . ., aidi }⊂k〈B〉 which projects to a basis of

ϕ−1(k〈Aim〉∩ϕ(k〈B〉))
k〈BiM〉+K

,

because ϕ induces an isomorphism

ϕ−1(k〈Aim〉∩ϕ(k〈B〉))
k〈BiM〉+K

� k〈A
i
m〉∩ϕ(k〈B〉)
ϕ(k〈BiM〉)

,

and always

k〈Aim〉∩



∑

j �=i
k〈Aim〉



=0, (b)

so k〈Aim〉∩
[∑n

j=1 ϕ(k〈BjM〉)
]
=ϕ(k〈BiM〉), and hence

k〈Aim〉∩ϕ(k〈B〉)
ϕ(k〈BiM〉)

= k〈Aim〉∩ϕ(k〈B〉)
k〈Aim〉∩

[∑n
j=1 ϕ(k〈BjM〉)

]

⊂ ϕ(k〈B〉)
∑n

i=1 ϕ(k〈BiM〉)
�ϕ(k〈M−1B〉).

By (b) we have that

ϕ−1(k〈Aim〉∩ϕ(k〈B〉))∩



∑

j �=i
ϕ−1(k〈Ajm〉∩ϕ(k〈B〉))



=K,

therefore the set
[
�ni=1

(
BiM �{aij }dij=1

)]
� {bi}di=1 is linearly independent in

k〈B〉; moreover it is a basis of
∑n

i=1 ϕ
−1(k〈Aim〉∩ϕ(k〈B〉)). In order to com-

plete it to a basis B of k〈B〉 we only need to add a finite set {b′1, . . ., b′d ′ }⊂
k〈B〉 which projects to a basis of the following vector space

k〈B〉
∑n

i=1 ϕ
−1(k〈Aim〉∩ϕ(k〈B〉))

.

Notice that this vector space is isomorphic to

ϕ(k〈B〉)
⊕n

i=1 k〈Aim〉∩ϕ(k〈B〉)
⊂ k〈A〉
⊕n

i=1 k〈Aim〉
�k〈m−1A〉, (c)

and hence finite-dimensional. The inclusion (c) follows from (a). Let
{a1, . . ., ae}⊂k〈A〉 be a basis of

k〈A〉
ϕ(k〈B〉)+ (⊕n

i=1 k〈Aim〉
) .
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By (c) A = (�ni=1A
i
m) � {ϕ(b′i)}d

′
i=1 � {ai}ei=1 is a basis of k〈A〉. Let α :

A→ T 0
n , β : B → T 0

n be the height functions defined as α and β over
�ni=1A

i
m and �ni=1 B

i
M , respectively, and constant v0 on the other elements.

The identities k〈A〉=k〈A〉 and k〈B〉=k〈B〉 induce controlled isomorphisms
φ1 : k〈A〉α � k〈A〉α and φ2 : k〈B〉β � k〈B〉β , so if we define ψ =φ1ϕφ

−1
2 then

M�Cokerψ . But if we define the sets 1A=A1
m � {ϕ(b′i)}d

′
i=1 � {ai}ei=1,

iA=
Aim (1 < i � n), 1B = B1

M � {a1
j }d1
j=1 � {bi}di=1 � {b′i}d

′
i=1,

iB = BiM � {aij }dij=1 (1 <
i � n), and the height functions iα and iβ as the restriction of α and β

to iA and iB, respectively (1 � i � n), then we observe that (1 � i � n)

iα(iA), iβ(iB)⊂{v0}∪ {vim}m � 1⊂T 0
n ,

ψ(iB)⊂k〈iA〉,
A=�ni=1

iA, B=�ni=1
iB.

Notice also that A=�ni=1
iA and B=�ni=1

iB. Hence the proposition follows.

10. Classification of Finitely Presented k(n)-Modules

In this section we complete the proofs of Theorems 1.1 and 1.2 in the
introduction. For this, the crucial result is Theorem 10.1 where we compute
the monoid Iso(fp(k(n))) in terms of the free abelian monoid Iso(subfr

n ).

THEOREM 10.1. The following monoid morphism is an isomorphism for
every n∈N:

(�n, Iso(S)) : Iso(fp(k(n)))
�→N∞,n×

n∏

i=1

N∞×
n∏

i=1

N∞× Iso(subfr
n ).

This theorem follows from the strongest results previously proven in this
paper. More precisely, the surjectivity of (�n, Iso(S)) is a consequence of
Propositions 6.6, 7.3, Corollaries 9.2, 9.7,and 9.8 and Proposition 9.10.
Furthermore, this morphism is injective by Theorem 10.2. In order to state
it we introduce the following notation. Given d ∈N∞,n the k(n)-module Ad

will denote F
1
∗Ad provided d ∈N0 and ⊕i∈SFi∗R if d=∞S for some ∅ �=S⊂

{1, . . . , n}.

THEOREM 10.2. Any f. p. k(n)-module M decomposes in the following way

M�AλM⊕
(

n⊕

i=1

F
i
∗BµiM
)

⊕
(

n⊕

i=1

F
i
∗CνiM
)

⊕MSM.
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This theorem follows from Proposition 6.6, Theorem 7.2, Propositions
9.9 and 9.10, and the following lemma.

LEMMA 10.3. Given two f. p. k(1)-modules M and N there exists a k(n)-
module isomorphism F

i
∗M�F

j
∗N (1 � i, j � n) if and only if one of the fol-

lowing conditions is satisfied:

• i= j and M�N ,
• M�N �Am for some m∈N0.

Proof. The implication ⇒ follows from Propositions 6.6 and 7.3 and
Corollary 7.4. On the other hand if M�N then obviously F

i
∗M�F

i
∗N .

Moreover, F
i
∗Am�F

j
∗Am are isomorphic (m∈N0) because both modules are

isomorphic to a free T̄n-controlled k-vector space whose basis is a set with
m elements, compare Lemma 7.7.

As a consequence of Proposition 8.5 and Theorem 10.1 we obtain the
next corollary.

COROLLARY 10.4. The algebra k(n) has the same representation type as
the n-subspace quiver.

Now Theorem 1.1 follows from Remarks 3.10 and 8.6 and Corollary
10.4.

We obtain from Propositions 6.6 and 7.3 and Theorems 10.1 and 10.2,
the following presentation of the monoid Iso(fp(k(n))).

COROLLARY 10.5. (Classification of f. p. k(n)-modules). Let {V (n,j)}j∈Jn
be the set of indecomposable rigid n-subspaces. There is a solution to the
decomposition problem in the category of f. p. k(n)-modules given by the
following 1 + 5n + card Jn elementary modules (1 � i � n, j ∈Jn)

F
1
∗A,Fi∗R,Fi∗B,Fi∗B∞,Fi∗C,Fi∗C∞,MV (n,j),

and 6n elementary isomorphisms (1 � i � n)

F
1
∗A⊕F

i
∗R�F

i
∗R, F

i
∗R⊕F

i
∗R�F

i
∗R, F

i
∗B⊕F

i
∗B∞�F

i
∗B∞,

F
i
∗B∞⊕F

i
∗B∞�F

i
∗B∞, F

i
∗C⊕F

i
∗C∞�F

i
∗C∞, F

i
∗C∞⊕F

i
∗C∞�F

i
∗C∞.

This classification theorem together with Proposition 8.7 and Remark
8.8 complete the proof of Theorem 1.2.
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Appendix A. Some Computations of Ext1
k(n) Groups

The aim of this appendix is to provide some tools and techniques to com-
pute the Ext1

k(n) group of any pair of f. p. k(n)-modules. This group is in
fact a k-vector space, so it is determined by its dimension. Higher Ext∗k(n)
groups vanish over f. p. k(n)-modules by Corollary 7.16. Since the functor
Ext1

k(n) is biadditive we just have to compute it over pairs of elementary f.
p. k(n)-modules (see Corollay 10.5). We shall not make all these computa-
tions here for an arbitrary n, but just for n=1, k(1)=RCFM(k). In addition
we show for any n∈N that the Ext1

k(n) of pairs of f. p. k(n)-modules com-
ing from finite-dimensional n-subspaces via the functor M in (9.a) coincide
with their Ext1

kQn
as modules over the path algebra. This last vector space

is much easier to compute, since one can use the integral bilinear form of
the quiver Qn (see [17]).

Let R be the k-algebra RCFM(k) as in Section 7. Given two elementary
R-modules R/YR (Y �=0) and R/ZR (see Theorem 7.1), one can check by
using Lemma 7.9 and basic homological algebra that there is an isomor-
phism of k-vector spaces

Ext1
R(R/YR,R/ZR)� R

RY+ZR . (A.a)

This formula also holds for Z = 0, moreover, in this case it is a left-R
-module isomorphism.

LEMMA A.1. We have the following identities

(1) AR={R∈R; r0j =0 for all j ∈N0},
(2) (I−A)R={R∈R;∑i∈No

rij =0 for all j ∈N0},
(3) (I−At )R={R∈R; given any i∈N0,

∑
n � i rnj =0 for almost all j ∈N0},

(4) (I− Bt )R= {R ∈R; given m ∈ N0 and i � m,
∑

n � m ri+ n(n+1)
2 ,j = 0 for

almost all j ∈N0}.

Proof. One can check that the right-hand-side sets of the statement
are ideals, hence in order to establish the inclusions ⊂ it is enough to
prove that the matrix defining each left-hand-side ideal belongs to the
corresponding right-hand-side set. This can be checked by a tedious but
straightforward computation. Suppose now that R is a matrix in the
right-hand-side set of (1), (2), (3), or (4), then one can check that the
matrix C1,C2,C3 or C4 defined as c1

0j = 0,c1
i+1,j = rij ,c2

ij =
∑i

n=0 rnj ,c3
ij =∑

n � i rnj (i, j ∈N0),c4
i+m(m+1)

2 ,j
=∑n � m ri+ n(n+1)

2 ,j (i, j ∈N0,m � i), belongs to

R and satisfies AC1 = R, (I− A)C2 = R, (I− At )C3 = R or (I− Bt )C4 = R,
provided we are in case (1), (2), (3) or (4). Hence we are done.
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By using Lemma A.1 and the involution of the k-vector space R given
by transposition of matrices, one readily checks that the following lemma.

LEMMA A.2. We have the following equalities:

(1) R(I−A)=
{
R∈R; given any j ∈N0,

∑
n � j rin=0 for almost all i∈N0

}
,

(2) R(I−At) =
{
R∈R;∑j∈N0

rij =0 f or all i ∈N0

}
,

(3) R(I− B)=
{
R ∈R; given m ∈ N0 and j � m,

∑
n � m ri,j+ n(n+1)

2
= 0 for

almost all i ∈N0

}
.

PROPOSITION A.3. We have that

(1) dim Ext1
R(B,R)= (card k)ℵ0 ,

(2) dim Ext1
R(C,R)= (card k)ℵ0 ,

(3) dim Ext1
R(B∞,R)= (card k)ℵ0 ,

(4) dim Ext1
R(C∞,R)= (card k)ℵ0 ,

(5) dim Ext1
R(B,A)=0,

(6) dim Ext1
R(C,A)=1,

(7) dim Ext1
R(B∞,A)=0,

(8) dim Ext1
R(C∞,A)=ℵ0.

Proof. One can check by using (A.2) (1), (A.1) (1) and (A.2) (2), and
(A.1) (1) and (A.2) (3), that there are k-vector space isomorphisms

R
R(I−A)

�
∏
i∈N0

k
⊕

i∈N0
k
, R+R(I−A) 
→




∑

j∈N0

rij





i∈N0

+
⊕

i∈N0

k,

R
R(I−At )+AR �k, R+ (R(I−At )+AR) 
→

∑

j∈N0

r0j ,

R
R(I−Bt )+AR �

⊕

j∈N0

k, R+ (R(I−Bt )+AR) 
→



∑

n� j
r
0,j+ n(n+1)

2





j∈N0

,

hence (1), (6) and (8) follow from (A.a).
For any pair of elementary f. p. R-modules the inequality dim Ext1

R �
(card k)ℵ0 follows from (A.a) and Proposition 3.8. Now (2) is a conse-
quence of (1) and Proposition 7.10 (1). Moreover (3) follows from (1) and
the fact that B is a direct summand of B∞, see Theorem 7.1, and (4) is a
consequence of (3) and Proposition 7.10 (2).

Given any matrix R∈R, if R1,R2 ∈R are the matrices defined by r1
0j =

r0j , r2
ij = rij (i > 0), and rnij = 0 otherwise, then R=R1 +R2

,R1 ∈R(I− B)
and R2∈AR, by (A.1) (1) and (A.2) (3), hence R=R(I−B)+AR and (7)
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follows by (A.a). Moreover, since B is a direct summand of B∞ by Theo-
rem 7.1 then (5) also follows.

By Theorem 7.1, Corollaries 7.12 and 7.17 the Ext1
R group of any other

pair of elementary f. p. R-modules is zero, hence the first extension groups
are now completely determined for f. p. R-modules.

PROPOSITION A.4. For any pair of finite-dimensional n-subspaces there is
a natural isomorphism

Ext1
kQn
(V ,W)�Ext1

k(n)(MV ,MW).

proof. Projective representations of Qn are (arbitrary) direct sums of the
following n+1 indecomposable n-subspaces,

F
1(0→k), F

i(k→k), (1 � i � n).

Since M is an exact full inclusion of categories and any finite-dimen-
sional representation of Qn admits a length-one projective resolution by
finite-dimensional projective representations it is enough to check that

(1) Ext1
k(n)(MF

1(0→k),MF
1(0→k))=0,

(2) Ext1
k(n)(MF

1(0→k),MF
i(k→k))=0 (1 � i � n),

(3) Ext1
k(n)(MF

i(k→k),MF
1(0→k))=0 (1 � i � n),

(4) Ext1
k(n)(MF

i(k→k),MF
j (k→k))=0 (1 � i, j � n).

The resolution constructed in the proof of Proposition 9.1 shows that
MF

1(0→ k) is a projective k(n)-module isomorphic to a 1-dimensional T̄n-
controlled k-vector space, hence (1) and (2) hold. Moreover, one can easily
check (3) and (4) by using the definition of M in (9.a) and the resolutions
of MF

i(k→k)=0 (1 � i � n) in the proof of Proposition 9.1.
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